Vitamin D supplementation in reducing the risk of vitamin D insufficiency during infancy

An evidence based review of the literature

Carmen Hayward

Patient presentation

20 day-old Caucasian infant
From Adelaide
Mother exclusively breastfeeding

• Will baby need vitamin D???

Should breastfed babies receive vitamin D supplementation?

Vitamin D

Via the placenta during fetal lifeSunlight after birth

Measuring vitamin D

- Measured as the serum concentration of 25hydroxyvitamin D [25(OH)D]
- Increased risk low bone density and rickets
 Below 40 45 nmol/L

• Insufficiency:

Less than 50 nmol/L

Risk factors

Source: www.telegraph.co.uk

Clinical focus

Guidelines

Vitamin D and health in pregnancy, infants, children and adolescents in Australia and New Zealand: a position statement

Georgia A Paxton MD RS, MPH, FRACP, Head of Immigrant Health,

and Research Fellow Gryn R Tease MERS, MD, FRANCOS, Clinical Services Director: and A secciate Professor⁴ Carvi A Newson Chair of Nubition

and Agoing¹ Repecta S Mason

Mil 25, PhD Head of Physiology and Decade Director⁴ John J McGrath

ME ES, PhD, FRANZER, Professor,⁷ and Director⁴

Meiznie J Thompson MEIES, FRACP, Immigrant Health Fellow

ow vitamin D levels are a major public health concern across the lifespan. This position statement of the Australian and New Zealand Bone and Mineral Society and Osteoporosis Australia accompanies a position statement on vitamin D and health in adults1 and updates a 2006 position statement.2 It is intended for primary care providers and specialists involved in the care of children and pregnant women, and is endorsed by the Australasian Paediatric Endocrine Group, Royal Australasian College of Physicians and Royal Australian and New Zealand College of Obstetricians and Cynaecologists. The consensus process is described in Box 1.

Physiology

A summary of vitamin D obviology is provided in the

- US recommended dietary allowance for vitamin D is 600IU daily in children aged over 12 months and during pregnancy and lactation, assuming minimal sun exposure.
- Risk factors for low vitamin Diare: Jack of skin exposure to sunight, darkskin southerly latitude, conditions affecting vitamin D metabolism and storage (including obesity) and for infants, being born to a mother with low vitamin D and exclusive breastfeeding combined with at least one other risk factor.

Targeted measurement of 25(OH)D levels it

Source: Paxton G. et al. Vitamin D and health in pregnancy, infants, children and adolescents in Australia and New Zealand: a position statement. Medical Journal of Australia. 2013;198(3):142-3.

risk factors for low vitamin D, and give 400 IU vitamin D₃ daily to exclusively breastfed infants with other risk factors for low vitamin D. Breastfeeding women with low

2 Department of Matiking University of Melbourney Melbourne, VIC Division of Women's

and Children's Services, Wedger Health Melcome VC 4 North West Academic

Carbo, University of Webcume, Mebcume, VC

and Nutrition Sciences, Dealer University, Melbourne, VIC

also be vitamin D deficient.3 Further, premature infants have low vitamin D stores solely due to prematurity.5 During lactation, maternal 1,25(OH)₂D levels decrease and PTH levels remain low, but the combination of elevated parathyroid hormone-related protein produced by the lactating breast and low oestradiol levels stimulate maternal bone resorption and increased South the regulation of the second se in transient loss of maternal bone mineral content, with recovery after weaning. Infants depend on their own

hence neonates been to vitamin D deficient mothers will

University of Sydney, Sense Non. there is little vitamin D in breast milk.6 controlled trials of vitamin D supplementation.

Sources of vitamin D

Sunlight

Sunlight exposure is the most important determinant of vitamin D levels, even in exclusively breastfed infants,7 and is estimated to provide over 90% of vitamin D in humans. Skin synthesis of vitamin D occurs through the action of ultraviolet B (UVB) radiation in sunlight, and varies with skin colour, ultraviolet radiation (UVR) protection (eg. Silicaritation synthesis, ingestion and metabolism of vitamin D, as clothing, shade, sursceen), time spent outside, latitude, season, time of day, amount of cloud cover, air pollution

Additional risk factors

- Lack of skin exposure to sunlight
 Dark skin
- Southerly latitude
- Conditions affecting vitamin D metabolism and storage
- Being born to a mother with low vitamin D

The clinical questions

In healthy breastfed infants with no confirmed maternal history of vitamin D insufficiency:

- Does vitamin D supplementation reduce the risk of vitamin D insufficiency during infancy?
- If so, is it without increasing the risk of adverse events?

Relevant publications

Database of origin	Citation	Type of study
Dynamed	Pham, 2015	Clinical practice guideline
	Grant et al., 2014	Randomised controlled trial
Pubmed	Onal et al., 2010	Cross-sectional study
Pubmed / Medline	Merewood et al., 2012	Prospective cohort study
Medline	Dawodu et al., 2014	Prospective cohort study
	Ziegler et al., 2006	Prospective cohort study
Turning Research into Practice	Green et al., 2015	Cross-sectional study
	Ponnapakkam et al., 2015	Randomised controlled trial
	Pludowski et al., 2011	Prospective cohort study
	Ala-Houhala et al,. 1986	Non-randomised controlled trial

Relevant publications

Database of origin	Citation	Type of study	
Dynamed	Pham, 2015	Clinical practice guideline	
	Grant et al., 2014	Randomised controlled trial	
Pubmed	Onal et al., 2010	Cross-sectional study	
Pubmed / Medline	Merewood et al., 2012	Prospective cohort study	
Medline	Dawodu et al., 2014	Prospective cohort study	
	Ziegler et al., 2006	Prospective cohort study	
Turning Research into Practice	Green et al., 2015	Cross-sectional study	
	Ponnapakkam et al., 2015	Randomised controlled trial	
	Pludowski et al., 2011	Prospective cohort study	
	Ala-Houhala et al,. 1986	Non-randomised controlled trial	

Vitamin D During Pregnancy and Infancy and Infant Serum 25-Hydroxyvitamin D Concentration

AUTH ORS: Cameron C. Gnart, MBChB, PhQ* Alistain W. Stewart, BSq* Robert Songg, MBBS, PhD,* Tania Milne,* Judy Rowden,* Aleo Ekenoma, MBBS,* Clare Wall, PhD,* Edwin A. Mitchel, MBBS, DSq. Yeu Chengle, MBChB, PhD,* Adrian Trenholme, MB, BChinf* Julian Chane, MBBS,* and Carlos A. Camargo Jr. MD, DYFN*

«Pasdar kit: Ohid and Yaath Health, Egideniology and Ekstatistics, "Obstatrics and Grossology "Natrikin, and "Is Lapangs Housen Marci (In Intersty of Auchiand, Auckined, New Janland, Yimman and Ohidmain Health, Middemane Hapital, Audiand, New Zaaland, "Markins, University of Otago, Weilington, New Zaaland, Markins, University Middoins, Massachusetts General Heapital, Harvard Mediani School, Stehen, Massachusetts

KEY WORDS

vitemin D, 25 hydroxyvitemin D, pregnancy, infancy, supplementation

ALL REVIETIONS

25(0H)0—25-hydroxyvitamin D N2—New Zealand RD—recommended dietary intale

Dr Crant conceived and designed the study, developed the data collection instruments, analyzed and interpreted the data, and completed the first and final drafts of the manuscript; Mr. Stewart conceived and designed the study analyzed and interpreted the data, neviewed and neviced the manuscript, and approved the final manuscript as submitted; Dr Robert Scragg conceived and designed the study developed the data collection instruments, critically reviewed the menuscript, and approved the final manuscript as submitted; Ms Milne and Ms Rowden developed the neuruliment and retention strategy for the study. designed the data collection instruments, coordinated the collection of the data, and approved the final manuscript as submitted: Or Evenome conceived and designed the study. developed the data collection instruments, and approved the final manuscript as submitted; Drs Wall and Grengle developed the data collection instruments, critically reviewed the menu script, and approved the final manuscript as submitted; Dr Michell conceived and designed the study developed the date collection instruments, reviewed and revised the manuscript, and approved the final menu script as submitted; Dr Trenholme supervised the collection of safety data, critically reviewed the menuscript, and approved the final menuscript as submitted: Br Grane developed the data collection instruments, reviewed and revised the manuscript, and approved the final manuscript. as submitted, and Dr. Camango conceived and designed the study, developed the data collection instruments, analyzed and interpreted the data, neviewed and neviced the manuscript, and approved the final menuscript as submitted.

(Continued on last page)

WHAT'S KNOWN ON THIS SUBJECT: A serum 25-bydraxyvitamin D (25(0H)D) concentration of 20 ng/mL meets the requirements of at least 97.5% of the population older than 1 year. A recommended dietary intake to achieve this serum 25(0H)D concentration has not been established during infancy.

WHAT THIS STUDY AD DS: Daily maternal (during pregnancy) and then infant vitamin supplementation with $1000/400 \, IU$ or 2000/800U increases the proportion of infants with $25 \, (0H) D \ge 20 \, ng/mL$ during infancy with the higher dose sustaining this increase for longer.

abstract

OBJECTIVE: To determine the vitamin D dose necessary to achieve serum 25 hydroxyvitamin D (25(DH)D) concentration ≥20 ng/mL during infancy.

METHODS: A randomized, double-blind, placebo-controlled trial in New Zealand. Pregnant mothers, from 27 weeks' gestation to birth, and then their infants, from birth to age 6 months, were randomly assigned to 1 of 3 mother/infant groups: placebo/placebo, vitamin D₅ 1000/400 IU, or vitamin D₅ 2000/800 IU. Serum 25(0H)0 and calcium concentrations were measured at enrollment, 36 weeks' gestation, in cord blood, and in infants at 2, 4, and 6 months of age.

RESULTS: Wo-hundred-and-sixty pregnant women were randomized. At enrollment, the proportions with serum 25(0H0) \geq 20 ng/mL for placebo, lower-dose, and higher-dose groups were 54%, 64%, and 55%, respectively. The proportion with 25(0H0) \geq 20 ng/mL was larger in both intervention groups at 36 weeks' gestation (30%, 91%, 89%, P < .001). In comparison with placebo, the proportion of infants with 25(0H)D \geq 20 ng/mL was larger in both intervention groups to age 4 months: cord blood (22%, 72%, 71%, P < .001), 2 months (50%, 82%, 92%, P < .001), and 4 months (66%, 87%, 87%, P = .004), but only in the higher-dose group at age 6 months (74%, 82%, 88%, P = .07; higher dose versus placebo P = .03, lower dose versus placebo P = .21.

CONCLUSIONS: Daily vitaminD supplementation during pregnancy and then infancy with 1000/400 IU or 2000/800 IU increases the proportion of infants with 25(0100 ≥20 ng/mL, with the higher dose sustaining this increase for longer. Pediatrics 2014;133:e143–e153

ARTICLE

Group	Placebo (n = 87)	Low dose vitamin D (n = 87)	High dose vitamin D (n = 86)
Intervention			
Mother	Daily placebo from enrolment until child birth	1000 IU vitamin D ₃ daily from enrolment until childbirth	2000 IU vitamin D ₃ daily from enrolment until childbirth
Infant	Daily placebo from birth until 6 months of age	400 IU vitamin D ₃ daily from birth until 6 months of age	800 IU vitamin D ₃ daily from birth until 6 months of age
Blood 25(OH) vit D			
Enrolment (Mother)			>
36 weeks (Mother)			>
Cord blood			\rightarrow
2 months			
4 months			
6 months			

Similar characteristics between study groups

• Formula milk volume consumed

• Time spent outdoors each day

 Reported compliance with taking study medication

	(9 5%	Absolute risk confidence inte	Absolute ris (Number nee	k reduction ded to treat ^b)	
Infant Age	Placebo	Low dose vit D	High dose vit D	Low dose vit D vs placebo	High dose vit D vs placebo
At birth	0.78	0.28 (0.19 - 0.40)	0.29 (0.19 - 0.41)	0.50 (2)	0.49 (3)
2m	0.50 (0.39 - 0.61)	0.18	0.08	0.32 (4)	0.42 (3)
4m	0.34 (0.24 - 0.46)	0.13	0.13	0.21 (5)	0.21 (5)
6m	0.26 (0.17 - 0.37)	0.18	0.11	0.08 (13)	0.15 (7)

	(9 5%	Absolute risk confidence inte	Absolute ris (Number nee	k reduction ded to treat ^b)	
Infant Age	Placebo	Low dose vit D	High dose vit D	Low dose vit D vs placebo	High dose vit D vs placebo
At birth	0.78	0.28 (0.19 - 0.40)	0.29 (0.19 - 0.41)	0.50 (2)	0.49 (3)
2m	0.50 (0.39 - 0.61)	0.18	0.08	0.32 (4)	0.42 (3)
4m	0.34 (0.24 - 0.46)	0.13	0.13	0.21 (5)	0.21 (5)
6m	0.26 (0.17 - 0.37)	0.18	0.11	0.08 (13)	0.15 (7)

	(9 5%	Absolute risk confidence inte	Absolute ris (Number nee	k reduction ded to treat ^b)	
Infant Age	Placebo	Low dose vit D	High dose vit D	Low dose vit D vs pl <u>aceb</u> o	High dose vit D vs pl <u>aceb</u> o
At birth	0.78	0.28 (0.19 - 0.40)	0.29 (0.19 - 0.41)	0.50 (2)	0.49 (3)
2m	0.50 (0.39 - 0.61)	0.18	0.08	0.32 (4)	0.42 (3)
4m	0.34 (0.24 - 0.46)	0.13	0.13	0.21 (5)	0.21 (5)
6m	0.26 (0.17 - 0.37)	0.18	0.11	0.08 (13)	0.15 (7)

	(9 5%	Absolute risk confidence inte	Absolute ris (Number nee	k reduction ded to treat ^b)	
Infant Age	Placebo	Low dose vit D	High dose vit D	Low dose vit D vs placebo	High dose vit D vs placebo
At birth	0.78	0.28 (0.19 - 0.40)	0.29 (0.19 - 0.41)	0.50 (2)	0.49 (3)
2m	0.50 (0.39 - 0.61)	0.18	0.08	0.32 (4)	0.42 (3)
4m	0.34 (0.24 - 0.46)	0.13	0.13	0.21 (5)	0.21 (5)
6m	0.26 (0.17 - 0.37)	0.18	0.11	♥ 0.08 (13)	♥ 0.15 (7)

Applying the results to infants in Adelaide

Adapted from: https://www.google.com.au/maps/@-36.4815576,157.071088,5z

Vitamin D insufficiency in Sydney, Australia

% of neonates born with vitamin D insufficiency in Sydney, Australia*

▶ 16

> 22

> 30

→ 30

> 36

*Bowyer L et al. Vitamin D, PTH and calcium levels in pregnant women and their neonates. *Clinical Endocrinology*. 2009;70(3):372-7.

Table 1: the Fitzpatrick's classification

Vitamin D insufficiency in Sydney, Australia

% of neonates born with vitamin D insufficiency in Sydney, Australia*

> 22

> 36

*Bowyer L et al. Vitamin D, PTH and calcium levels in pregnant women and their neonates. *Clinical Endocrinology*. 2009;70(3):372-7.

Table 1: the Fitzpatrick's classification

Using these results to estimate risk in Adelaide

30% + 78% = 54% 2

	Absolute Risk			Absolute ris (Number nee	k reduction ded to treat ^b)
Infant	Control	Low dose	High dose	Low dose	High dose
Age	group	vit D	vit D	vit D	vit D
	Adelaide			vs placebo	vs placebo
At birth	0.54	0.28	0.29	0.26 (4)	0.25 (4)
2m	0.35	0.18	0.08	0.17 (6)	0.27 (4)
4m	0.23	0.13	0.13	0.10 (10)	0.10 (10)
6m	0.18	0.18	0.11	0.0 (-)	0.07 (15)
aRounde	d up to near	est whole nur	mber by conv	ention (Straus	s et al., 2011)

	Absolute Risk			Absolute ris (Number nee	k reduction ded to treat ^b)
Infant	Control	Low dose	High dose	Low dose	High dose
Age	group	vit D	vit D	vit D	vit D
	Adelaide			vs placebo	vs placebo
At birth	0.54	0.28	0.29	0.26 (4)	0.25 (4)
2m	0.35	0.18	0.08	0.17 (6)	0.27 (4)
4m	0.23	0.13	0.13	0.10 (10)	0.10 (10)
6m	0.18	0.18	0.11	0.0 (-)	0.07 (15)
aRounde	d up to near	rest whole nur	mber by conv	ention (Straus	s et al., 2011)

	Absolute Risk			Absolute ris (Number nee	k reduction ded to treat ^b)
Infant	Control	Low dose	High dose	Low dose	High dose
Age	group	vit D	vit D	vit D	vit D
	Adelaide			vs placebo	vs placebo
At birth	0.54	0.28	0.29	0.26 (4)	0.25 (4)
2m	0.35	0.18	0.08	0.17 (6)	0.27 (4)
4m	0.23	0.13	0.13	0.10 (10)	0.10 (10)
6m	0.18	0.18	0.11	0.0 (-)	0.07 (15)
aRounde	d up to near	rest whole nur	mber by conv	ention (Straus	s et al., 2011)

	Absolute Risk			Absolute ris (Number nee	k reduction ded to treat ^b)
Infant	Control	Low dose	High dose	Low dose	High dose
Age	group	vit D	vit D	vit D	vit D
	Adelaide			vs placebo	vs placebo
At birth	0.54	0.28	0.29	0.26 (4)	0.25 (4)
2m	0.35	0.18	0.08	0.17 (6)	0.27 (4)
4m	0.23	0.13	0.13	0.10 (10)	0.10 (10)
6m	0.18	0.18	0.11	0.0 (-)	0.07 (15)
aRounde	d up to near	rest whole nur	mber by conv	ention (Straus	s et al., 2011)

Implications for policy and practice

1. Risk

- No adverse effect in this RCT
- 2. Cost
 - Relatively inexpensive and easy to access
- 3. Minimum difficulty
 - Integrate recommendations into policy and practice

3.1.4 'Conduct effective literature reviews'

3.1.5 'Critically assess published literature and other evidence'

3.1.4 'Conduct effective literature reviews'

- clearly identify the public health question and scope
- systematically search published and 'grey' literature
- document the search strategy
- present findings in a clear, well structured manner.

3.1.5 'Critically assess published literature and other evidence'

- Grade evidence
- interpret results of trials and measures of effectiveness
- interpret meta analyses
- present well-reasoned conclusions.

3.2.4 'Perform suitable epidemiological analyses'

3.2.4 'Perform suitable epidemiological analyses'

- define the objectives
- use analytical software
- use suitable statistical methods
- document the methodology
- perform descriptive analyses
- standardise rates
- calculate confidence intervals
- interpret multivariate analyses
- consider issues of causality (chance, bias, confounding)
- detect effect modification
- present the results of the analysis in written and oral form.

1.1.5 'Use evidence as the basis for public health practice'

1.1.5 'Use evidence as the basis for public health practice'

- critically assess the strength of evidence for one's own practice
- present limitations and uncertainty honestly when communicating findings to others.

Thank you

Dr Louise FloodDr Doug Shaw

References

- ALA-HOUHALA, M., KOSKINEN, T., TERHO, A., KOIVULA, T. & VISAKORPI, J. 1986. Maternal compared with infant vitamin D supplementation. Archives of Disease in Childhood, 61, 1159-1163.
- BOWYER, L., CATLING-PAULL, C., DIAMOND, T., HOMER, C., DAVIS, G. & CRAIG, M. 2009. Vitamin D, PTH and calcium levels in pregnant women and their neonates. *Clinical Endocrinology*, 70(3), 372-377.
- CARPENTER, T. 2015. Overview of Rickets in Children [Online]. Wolter Kluwer. Available: <u>http://www.uptodate.com/contents/overview-of-rickets-in-children</u> [Accessed June 15 2015].
- DAWODU, A., ZALLA, L., WOO, J., HERBERS, P., DAVIDSON, B., HEUBI, J. & MORROW, A. 2014. Heightened attention to supplementation is needed to improve the vitamin D status of breastfeeding mothers and infants when sunshine exposure is restricted. *Maternal and Child Nutrition*, 10, 383–397.
- GRANT, C., STEWART, A., SCRAGG, R., MILNE, T., ROWDEN, J., EKEROMA, A., WALL, C., MITCHELL, E., CRENGLE, S., TRENHOLME, A., CRANE, J. & CAMARGO, C. 2014. Vitamin D during pregnancy and infancy and infant serum 25-Hydroxyvitamin D concentration. *Pediatrics*, 133(1), e143-153.
- GREEN, T., LI, W., BARR, S., JAHANI, M. & CHAPMAN, G. 2015. Vitamin D supplementation is associated with higher serum 250HD in Asian and White infants living in Vancouver, Canada. *Maternal and Child Nutrition*, 11(2), 253-259.
- MEREWOOD, A., MEHTA, S., GROSSMAN, X., CHEN, T., MATHIEU, J., HOLICK, M. & BAUCHNER, H. 2012. Vitamin D Status among 4-Month-Old Infants in New England: A Prospective Cohort Study. *Journal of Human Lactation*, 28(2), 159–166.
- MISRA, M. 2015. Vitamin D Insufficiency and Deficiency in Children and Adolescents [Online]. Wolters Kluwer. Available: <u>http://www.uptodate.com/contents/vitamin-d-insufficiency-and-deficiency-in-children-and-adolescents</u> [Accessed June 22 2015].
- MUNNS, C., SLMM, P., RODDA, C., GARNETT, S., ZACHARIN, M., WARD, L., GEDDES, J., CHERIAN, S., ZURYNSKI, Y. & COWELL, C. 2012. Incidence of vitamin D deficiency rickets among Australian children: an Australian Paediatric Surveillance Unit study. *Medical Journal of Australia*, 196, 466-468.
- ONAL, H., ADAL, E., ALPASLAN, S., ERSEN, A. & AYDIN, A. 2010. Is daily 400 IU of vitamin D supplementation appropriate for every country: a cross-sectional study. *European Journal of Nutrition*, 49(7), 395-400.
- PAXTON, G., TEALE, G., NOWSON, C., MASON, R., MCGRATH, J., THOMPSON, M., SIAFARIKAS, A., CP., R. & MUNNS, C. 2013. Vitamin D and health in pregnancy, infants, children and adolescents in Australia and New Zealand: a position statement. *Medical Journal of Australia*, 198(3), 142-143.
- PHAM, C. 2015. Vitamin D intake and supplementation [Online]. EBSCO Information Services. Available: <u>http://www.dynamed.com/topics/dmp~AN~T114491/Vitamin-D-intake-and-supplementation</u> [Accessed June 24 2015].
- PLUDOWSKI, P., SOCHA, P., KARCZMAREWICZ, E., ZAGORECKA, E., LUKASZKIEWICZ, J., STOLARCZYK, A., PIOTROWSKA-JASTRZEBSKA, J., KRYSKIEWICZ, E., LORENC, R. & SOCHA, J. 2011. Vitamin D supplementation and status in infants: A prospective cohort observational study. *Journal of Pediatric Gastroenterology and Nutrition*, 53(1), 93-99.
- PONNAPAKKAM, T., BRADFORD, E. & GENSURE, R. 2010. A treatment trial of vitamin D supplementation in breast-fed infants: Universal supplementation is not necessary for rickets prevention in southern louisiana. *Clinical Pediatrics*, 49(11), 1053-1060.
- SCHANLER, R. 2015. Infant Benefits of Breastfeeding [Online]. Wolters Kluwer. Available: <u>http://www.uptodate.com/contents/infant-benefits-of-breastfeeding</u> [Accessed June 22 2015].
- STRAUS, S., GLASZIOU, P., RICHARDSON, W. & HAYNES, R. 2011. Evidence Based Medicine: How to practice and teach it, Edinburgh, Churchill Livingstone Elsevier.
- ZIEGLER, E., HOLLIS, B., NELSON, S. & JETER, J. 2006. Vitamin D Deficiency in Breastfed Infants in Iowa. Pediatrics, 118(2), 603-610.