

GONADAL PATHOLOGY AND RESPONSE TO GROWTH HORMONE THERAPY IN 45,X/46,XY FEMALES

<u>Angela Titmuss^{1,2}</u>, Paul Benitez-Aguirre^{1,2}, Kim Matthews³, Andrew Biggin^{1,2}, Maria Craig^{1,2}, Bin Moore¹, Neville Howard¹, Christopher Cowell^{1,2}, Geoffrey Ambler^{1,2}, Shubha Srinivasan¹

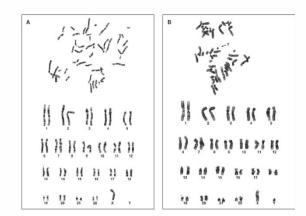
1. Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead

- 2. Discipline of Paediatrics and Child Health, University of Sydney
- 3. Adolescent Medicine Unit, The Children's Hospital at Westmead

Turner syndrome

- 1/2500 births
- Variety of karyotypes and phenotypes
 - 50% 45,X monosomy
 - 50% mosaic

Broad shield like chest with wide spaced nipples, pectus excavatum


Lymphoedema

Elbow- valgus deformity

Webbed neck, low hairline

Cardiac disease

Short stature

Hearing loss

Scoliosis/ kyphosis

Primary or early gonadal failure

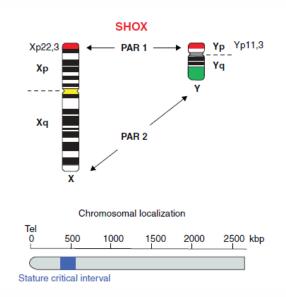
Renal anomalies

Coeliac, thyroid disease

Turner syndrome mosaicism with Y material

- 45,X/46,XY karyotype with female phenotype is rare
 - -<1/15 000 births
 - 6-10% of Turner syndrome
 - Female phenotype if low proportion Y material (SRY)

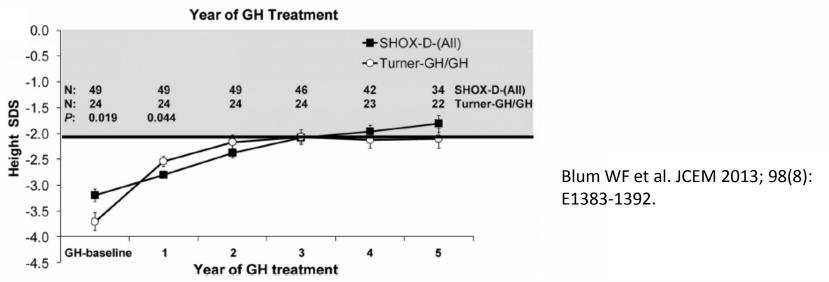
Two unanswered questions


- Does karyotype influence growth potential?
 - In Australia, 45,X/46,XY girls cannot receive growth hormone tx unless have had gonadectomy
- What is the cancer risk in these girls?

Short stature homeobox (SHOX)

- SHOX gene located on both X and Y chromosomes
 - More prone to deletions on Xp
 - Usually inherit 2 functional copies
 - Important for growth and bone development

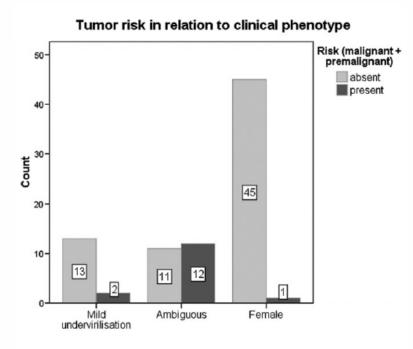
• SHOX deletion:


- 1/2000-5000 worldwide
- 1/40-150 short stature individuals
- Haploinsufficiency in Turner syndrome

SHOX deficiency vs Turner: - height and GH response

- 2013 study (Blum et al, 75 pts)
 - Mean ht TS lower than SHOX pre GH tx
 - Ht SD score gain from start of tx to final ht similar (1.32-1.34) with same dose of GH

 \rightarrow Children with SHOX deficiency responded similarly to TS girls when treated with same GH dose



Gonadoblastoma risk in 45,X/46,XY girls

- Varying risks reported but usually accepted as 10-15%
- Related to testis-specific protein on Y (TSPY) gene?

• Risk relates to phenotype?

- Cools et al (2011) suggest:
 - > 50% risk if ambiguous genitalia at birth
 - 2-3% risk if female phenotype
 Low incidence testicular tissue
 - 18% unable to identify gonads (? apoptosis)

Cools M et al. JCEM 2011; 96(7): E1171-1180.

What does the literature say re gonadoblastoma risk and female phenotype?

Table 2

Series of Patients with Peripheral Blood Karyotype 45,X/46,XY and Turner Syndrome Phenotype Who Underwent Gonadectomy and Tumor Risk

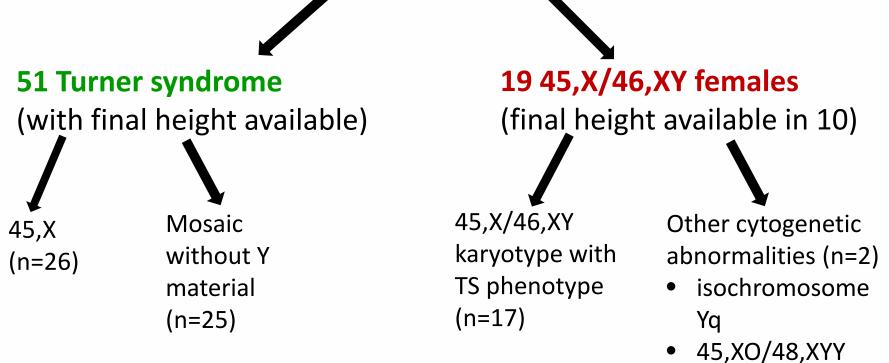
Study	Number of Patients	Patients with Gonadal Tumors, n (%)
Gravholt et al (2000) ¹⁰	7	1 (14)
Trobs et al (2004) ¹¹	4	1* (25)
Mazzanti et al (2005) ¹²	10	2 (20)
Brant et al (2006) ¹³	7	3 (43)
Cools et al (2011) ⁸	23	1 (4)
Present study	8	4 (50)

* Dysgerminoma; remainder of gonadal tumors were gonadoblastomas.

Dendrinos ML et al. 2015. J Pediatr Adolesc Gynecol; 28:192-195.

Aims of study

 To evaluate growth hormone response in Turner girls (TS) and 45,X/46,XY females


 To explore gonadoblastoma risk in 45,X/46,XY females

Methods

- Ethics approval from SCHN Ethics Committee
- Audit of patient records and endocrine database over last 30 years
- Final height data using database or GHAC data
- Comparisons made between TS and 45,X/46,XY groups
 - Mann-Whitney U test
- Independent review of all histopathology

Study population

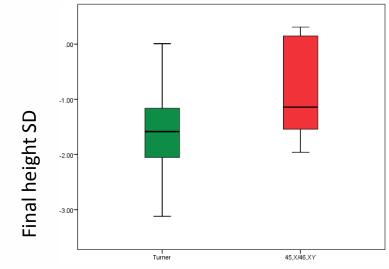
198 females aged ≤30 years with TS or mixed gonadal dysgenesis

+12

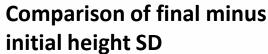
Presenting features

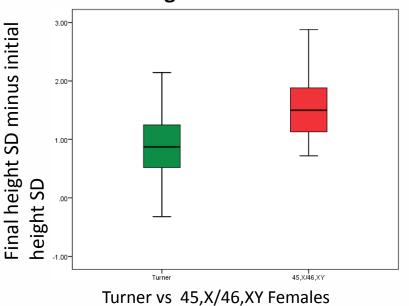
- All 45,X/46,XY patients assigned female gender of rearing
- Age at diagnosis from pre-natal to 13 years

PRESENTING FEATURE	NUMBER	AGE AT PRESENTATION
Atypical genitalia	 8 Clitoromegaly (8) Labial fusion (2) Absent or small uterus (5) 	Birth-3yo
Short stature	8	З-13уо
Dysmorphic features of Turner syndrome	3	Birth-11yo
Incidental antenatal karyotype finding	3	Antenatal

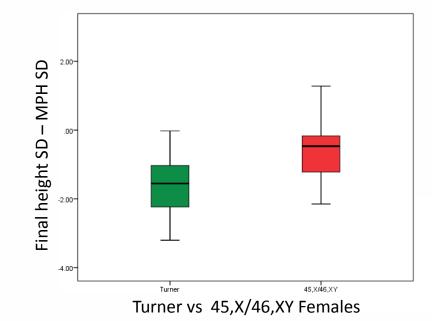

Baseline characteristics at GH commencement

	TOTAL GROUP N=198	TURNER SYNDROME N=50 (95% CI)	45,X/46,XY FEMALES N=10 (95% CI)	P value
Age (years)	9.1 (7.2 to 8.1)	8.1 (7.1 to 9.1)	7.7 (4.9 to 10.4)	0.37
Height SD	-2.4 (-2.6 to -2.2)	-2.5 (-2.7 to -2.2)	-2.3 (-2.8 to -1.9)	0.82
Mid-parental height SD	-0.14 (-0.4 to 0.1)	0.0 (-0.2 to 0.2)	-0.7 (-1.2 to -0.1)	0.04
GH dose (mg/m2/week)	7.1 (6.6 to 7.6)	7.1 (6.5 to 7.7)	7.0 (5.2 to 8.7)	0.59
Duration of growth hormone (years)	6.9 (5.9 to 7.9)	6.8 (5.8 to 7.8)	8.2 (4.6 to 11.7)	0.35

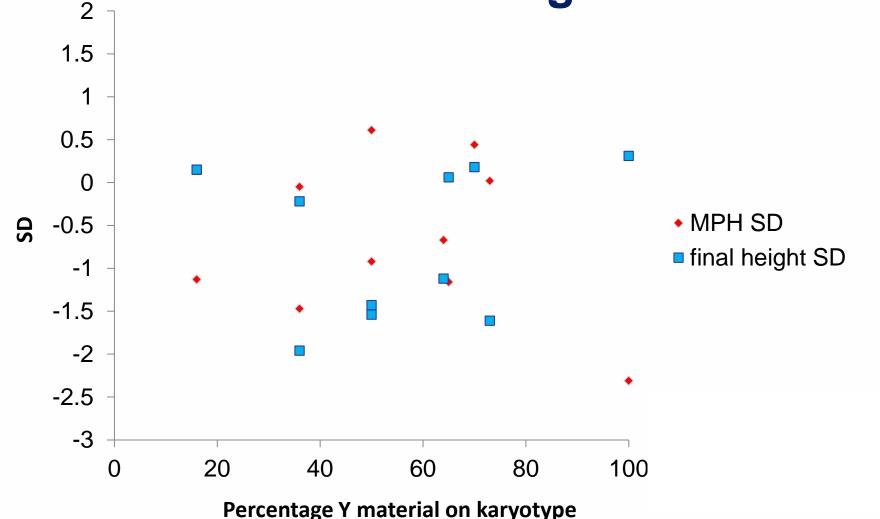

Height and growth hormone response


	TURNER SYNDROME N=50 (95% CI)	45,X/46,XY FEMALES N=9 (95% CI)	P value
Height SD at 12 months	-2.0 (-2.3 to -1.8)	-1.9 (-2.3 to -1.5)	0.95
Change in height SD at 12 months	0.4 (0.3 to 0.5)	0.4 (0.2 to 0.7)	0.81
Final height SD	-1.6 (-1.8 to -1.4)	-0.8 (-1.4 to -0.1)	0.02
Final height SD minus initial height SD	0.9 (0.7 to 1.0)	1.5 (1.1 to 2.0)	0.01
Final height SD minus MPH SD	-1.6 (-1.8 to - 1.4)	-0.3 (-1.3 to 0.7)	<0.01

Comparison of final height SD



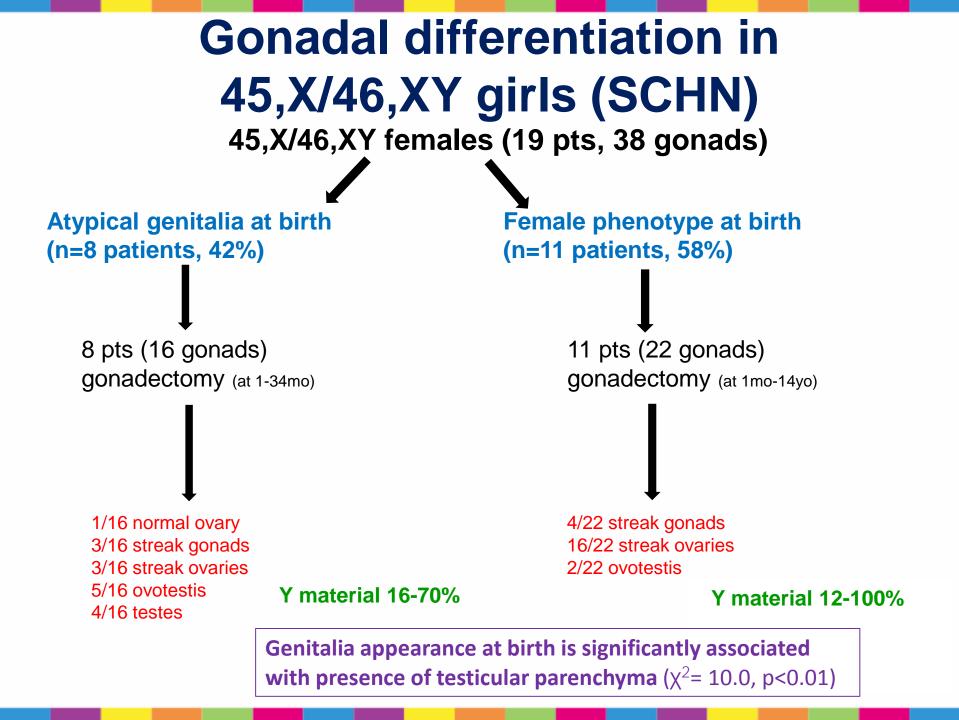
Turner vs 45,X/46,XY Females

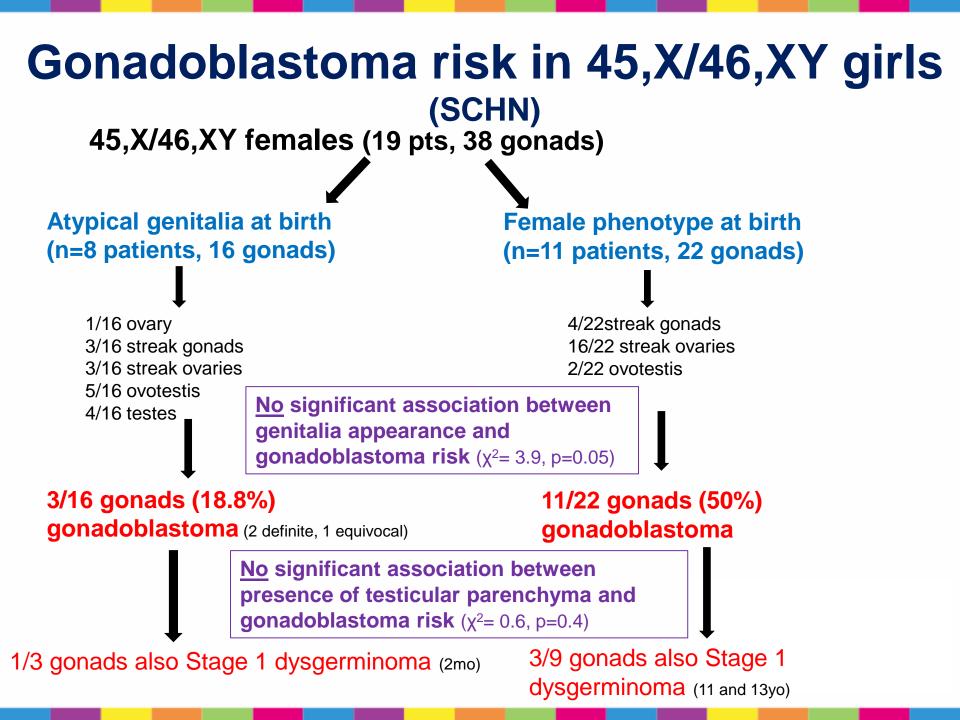


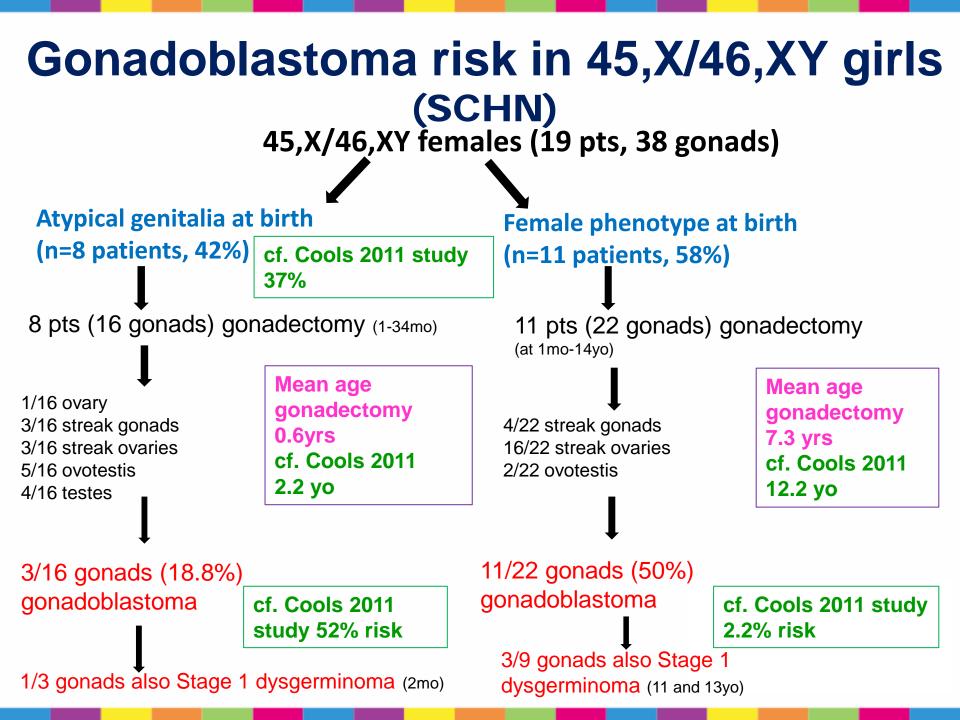
Comparison to target height SD

Percentage of Y material on karyotype is <u>not</u> associated with MPH or final height SD

Conclusions re growth


 45,X/46,XY females respond better to growth hormone treatment over time than Turner girls


Study population for gonadal pathology analysis


- Across SCHN
- 19 45,X/46,XY females aged ≤30 years
 - 45,X/46,XY karyotype with TS phenotype (n=17)
 - Other cytogenetic abnormalities (n=2)

» isochromosome Yq

» 45,XO/48,XYY +12

Conclusions

- Phenotype at birth or gonadal differentiation pattern is <u>not</u> associated with risk of gonadoblastoma
- Difficult to predict risk of gonadoblastoma in females with 45,X/46,XY karyotype
 - Recommendation for early gonadectomy in all girls

Future work

 Australia and NZ wide study looking at gonadal pathology in 45,X/46,XY females is currently underway

Acknowledgements

- Multidisciplinary teams involved in patients' care
- Dr Grahame Smith, Dr Kim Matthews

 Urology and Gynaecology
- Dr Nicky Graf
 - Histopathology
- CHW Radiology, Histopathology Medical Records

References

- Akbas E et al. Rare types of Turner syndrome: Clinical presentation and cytogenetics in five cases. Lab Medicine 2012; 43(5): 197-204.
- Alvarez-Nava F, et al. Effect of the parental origin of the X-chromosome on the clinical features, associated complications, the two year response to growth hormone and the biochemical profile in patients with turner syndrome. Int J Ped Endo 2013; 10.
- Blum WF, Ross JL, Zimmermann AG et al. GH Treatment to Final Height Produces Similar Height Gains in Patients with SHOX Deficiency and Turner Syndrome: Results of a Multicenter Trial. J Clin Endocrin Metab 2013; 98(8): E1383-1392.
- Cools M, Pleskacova J, Stoop H, et al. Gonadal Pathology and Tumor Risk in Relation to Clinical Characteristics in Patients with 45,X/46,XY Mosaicism. J Clin Endocrin Metab 2011; 96(7): E1171-E1180.
- Dendrinos, ML et al. Occurrence of Gonadoblastoma in Patients with 45,X/46,XY Mosaicism. J Pediatr Adolesc Gynecol 2015; 28:192-195.
- De Groote K et al. Cardiovascular pathology in Males and Females with 45,X/46,XY Mosaicism. PLOS One 2013; 8(2):E54977.
- Gravholt CL, et al. Occurrence of Gonadoblastoma in Females with Turner syndrome and Y chormosomal material: A Population Study. J Clin Endocrin Metab 2000; 85(9): 3199-3202.
- Johansen ML et al. 45,X/46,XY Mosaicism: Phenotypic Characteristics, Growth, and Reproductive Function a Retrospective Longitudinal Study. J Clin Endocrin Metab 2012; 97(8):E1540-1549.
- McCann-Crosby B et al. State of the art review in gonadal dysgenesis: challenges in diagnosis and management. Int J Ped Endo 2014:4.
- Oliveira CS, Alves C. The role of the SHOX gene in the pathophysiology of Turner syndrome. Endocrinol Nutr 2011; 58(8): 433-442.

