GONADAL PATHOLOGY AND RESPONSE TO GROWTH HORMONE THERAPY IN 45,X/46,XY FEMALES

Angela Titmuss1,2, Paul Benitez-Aguirre1,2, Kim Matthews3, Andrew Biggin1,2, Maria Craig1,2, Bin Moore1, Neville Howard1, Christopher Cowell1,2, Geoffrey Ambler1,2, Shubha Srinivasan1

1. Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead
2. Discipline of Paediatrics and Child Health, University of Sydney
3. Adolescent Medicine Unit, The Children’s Hospital at Westmead
Turner syndrome

- 1/2500 births
- Variety of karyotypes and phenotypes
 - 50% 45,X monosomy
 - 50% mosaic

Broad shield like chest with wide spaced nipples, pectus excavatum
Lymphoedema
Elbow- valgus deformity
Webbed neck, low hairline
Cardiac disease

Short stature
Hearing loss
Scoliosis/ kyphosis
Primary or early gonadal failure
Renal anomalies
Coeliac, thyroid disease
Turner syndrome mosaicism with Y material

- 45,X/46,XY karyotype with female phenotype is rare
 - <1/15,000 births
 - 6-10% of Turner syndrome
 - Female phenotype if low proportion Y material (SRY)
Two unanswered questions

• Does karyotype influence growth potential?
 – In Australia, 45,X/46,XY girls cannot receive growth hormone tx unless have had gonadectomy

• What is the cancer risk in these girls?
Short stature homeobox (SHOX)

- **SHOX gene located on both X and Y chromosomes**
 - More prone to deletions on Xp
 - Usually inherit 2 functional copies
 - Important for growth and bone development

- **SHOX deletion:**
 - 1/2000-5000 worldwide
 - 1/40-150 short stature individuals
 - Haploinsufficiency in Turner syndrome
SHOX deficiency vs Turner: - height and GH response

• 2013 study (Blum et al, 75 pts)
 – Mean ht TS lower than SHOX pre GH tx
 – Ht SD score gain from start of tx to final ht similar (1.32-1.34) with same dose of GH
 → Children with SHOX deficiency responded similarly to TS girls when treated with same GH dose

Blum WF et al. JCEM 2013; 98(8): E1383-1392.
Gonadoblastoma risk in 45,X/46,XY girls

- Varying risks reported but usually accepted as 10-15%
- Related to testis-specific protein on Y (TSPY) gene?
- Risk relates to phenotype?
 - Cools et al (2011) suggest:
 - > 50% risk if ambiguous genitalia at birth
 - 2-3% risk if female phenotype
 - Low incidence testicular tissue
 - 18% unable to identify gonads (? apoptosis)

Cools M et al. JCEM 2011; 96(7): E1171-1180.
What does the literature say re gonadoblastoma risk and female phenotype?

Table 2
Series of Patients with Peripheral Blood Karyotype 45,X/46,XY and Turner Syndrome Phenotype Who Underwent Gonadectomy and Tumor Risk

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Patients with Gonadal Tumors, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravholt et al (2000)</td>
<td>7</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Mazzanti et al (2005)</td>
<td>10</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Brant et al (2006)</td>
<td>7</td>
<td>3 (43)</td>
</tr>
<tr>
<td>Cools et al (2011)</td>
<td>23</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Present Study</td>
<td>8</td>
<td>4 (50)</td>
</tr>
</tbody>
</table>

* Dysgerminoma; remainder of gonadal tumors were gonadoblastomas.

Aims of study

• To evaluate growth hormone response in Turner girls (TS) and 45,X/46,XY females

• To explore gonadoblastoma risk in 45,X/46,XY females
Methods

- Ethics approval from SCHN Ethics Committee
- Audit of patient records and endocrine database over last 30 years
- Final height data using database or GHAC data
- Comparisons made between TS and 45,X/46,XY groups
 - Mann-Whitney U test
- Independent review of all histopathology
198 females aged ≤30 years with TS or mixed gonadal dysgenesis

- **51 Turner syndrome** (with final height available)
 - 45,X (n=26)
 - Mosaic without Y material (n=25)

- **19 45,X/46,XY females** (final height available in 10)
 - 45,X/46,XY karyotype with TS phenotype (n=17)
 - Other cytogenetic abnormalities (n=2)
 - isochromosome Yq
 - 45,XO/48,XYY +12
Presenting features

- All 45,X/46,XY patients assigned female gender of rearing
- Age at diagnosis from pre-natal to 13 years

<table>
<thead>
<tr>
<th>Presenting Feature</th>
<th>Number</th>
<th>Age at Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical genitalia</td>
<td>8</td>
<td>Birth-3yo</td>
</tr>
<tr>
<td>- Clitoromegaly (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Labial fusion (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Absent or small uterus (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short stature</td>
<td>8</td>
<td>3-13yo</td>
</tr>
<tr>
<td>Dysmorphic features of Turner syndrome</td>
<td>3</td>
<td>Birth-11yo</td>
</tr>
<tr>
<td>Incidental antenatal karyotype finding</td>
<td>3</td>
<td>Antenatal</td>
</tr>
</tbody>
</table>
Baseline characteristics at GH commencement

<table>
<thead>
<tr>
<th></th>
<th>TOTAL GROUP N=198</th>
<th>TURNER SYNDROME N=50 (95% CI)</th>
<th>45,X/46,XY FEMALES N=10 (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>9.1 (7.2 to 8.1)</td>
<td>8.1 (7.1 to 9.1)</td>
<td>7.7 (4.9 to 10.4)</td>
<td>0.37</td>
</tr>
<tr>
<td>Height SD</td>
<td>-2.4 (-2.6 to -2.2)</td>
<td>-2.5 (-2.7 to -2.2)</td>
<td>-2.3 (-2.8 to -1.9)</td>
<td>0.82</td>
</tr>
<tr>
<td>Mid-parental height SD</td>
<td>-0.14 (-0.4 to 0.1)</td>
<td>0.0 (-0.2 to 0.2)</td>
<td>-0.7 (-1.2 to -0.1)</td>
<td>0.04</td>
</tr>
<tr>
<td>GH dose (mg/m2/week)</td>
<td>7.1 (6.6 to 7.6)</td>
<td>7.1 (6.5 to 7.7)</td>
<td>7.0 (5.2 to 8.7)</td>
<td>0.59</td>
</tr>
<tr>
<td>Duration of growth hormone (years)</td>
<td>6.9 (5.9 to 7.9)</td>
<td>6.8 (5.8 to 7.8)</td>
<td>8.2 (4.6 to 11.7)</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>TURNER SYNDROME</td>
<td>45,X/46,XY FEMALES</td>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N=50 (95% CI)</td>
<td>N=9 (95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height SD at 12 months</td>
<td>-2.0 (-2.3 to -1.8)</td>
<td>-1.9 (-2.3 to -1.5)</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Change in height SD at 12 months</td>
<td>0.4 (0.3 to 0.5)</td>
<td>0.4 (0.2 to 0.7)</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Final height SD</td>
<td>-1.6 (-1.8 to -1.4)</td>
<td>-0.8 (-1.4 to -0.1)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Final height SD minus initial height SD</td>
<td>0.9 (0.7 to 1.0)</td>
<td>1.5 (1.1 to 2.0)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Final height SD minus MPH SD</td>
<td>-1.6 (-1.8 to -1.4)</td>
<td>-0.3 (-1.3 to 0.7)</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of final height SD

Turner vs 45,X/46,XY Females

Comparison of final minus initial height SD

Turner vs 45,X/46,XY Females

Comparison to target height SD

Turner vs 45,X/46,XY Females
Percentage of Y material on karyotype is not associated with MPH or final height SD.
Conclusions re growth

• 45,X/46,XY females respond better to growth hormone treatment over time than Turner girls
Study population for gonadal pathology analysis

- Across SCHN
- **19 45,X/46,XY females aged ≤30 years**
 - 45,X/46,XY karyotype with TS phenotype (n=17)
 - Other cytogenetic abnormalities (n=2)
 » isochromosome Yq
 » 45,XO/48,XYY +12
Gonadal differentiation in 45,X/46,XY girls (SCHN)

45,X/46,XY females (19 pts, 38 gonads)

Atypical genitalia at birth (n=8 patients, 42%)

- 8 pts (16 gonads)
 - gonadectomy (at 1-34mo)
 - 1/16 normal ovary
 - 3/16 streak gonads
 - 3/16 streak ovaries
 - 5/16 ovotestis
 - 4/16 testes
 - Y material 16-70%

Female phenotype at birth (n=11 patients, 58%)

- 11 pts (22 gonads)
 - gonadectomy (at 1mo-14yo)
 - 4/22 streak gonads
 - 16/22 streak ovaries
 - 2/22 ovotestis
 - Y material 12-100%

Genitalia appearance at birth is significantly associated with presence of testicular parenchyma ($\chi^2 = 10.0, p<0.01$)
Gonadoblastoma risk in 45,X/46,XY girls (SCHN)

45,X/46,XY females (19 pts, 38 gonads)

Atypical genitalia at birth (n=8 patients, 16 gonads)
- 1/16 ovary
- 3/16 streak gonads
- 3/16 streak ovaries
- 5/16 ovotestis
- 4/16 testes

Female phenotype at birth (n=11 patients, 22 gonads)
- 4/22 streak gonads
- 16/22 streak ovaries
- 2/22 ovotestis

3/16 gonads (18.8%) gonadoblastoma (2 definite, 1 equivocal)

11/22 gonads (50%) gonadoblastoma

No significant association between genitalia appearance and gonadoblastoma risk ($\chi^2 = 3.9$, p=0.05)

No significant association between presence of testicular parenchyma and gonadoblastoma risk ($\chi^2 = 0.6$, p=0.4)

1/3 gonads also Stage 1 dysgerminoma (2mo)

3/9 gonads also Stage 1 dysgerminoma (11 and 13yo)
Gonadoblastoma risk in 45,X/46,XY girls

Gonadoblastoma risk in 45,X/46,XY girls (SCHN)

45,X/46,XY females (19 pts, 38 gonads)

Atypical genitalia at birth
- (n=8 patients, 42%)
- 8 pts (16 gonads) gonadectomy (1-34mo)
 - 1/16 ovary
 - 3/16 streak gonads
 - 3/16 streak ovaries
 - 5/16 ovotestis
 - 4/16 testes
 - 3/16 gonads (18.8%) gonadoblastoma
 - 1/3 gonads also Stage 1 dysgerminoma (2mo)

Female phenotype at birth
- (n=11 patients, 58%)
- 11 pts (22 gonads) gonadectomy (at 1mo-14yo)
 - 4/22 streak gonads
 - 16/22 streak ovaries
 - 2/22 ovotestis
 - 11/22 gonads (50%) gonadoblastoma
 - 3/9 gonads also Stage 1 dysgerminoma (11 and 13yo)

cf. Cools 2011 study
- 52% risk
- 2.2% risk
- Mean age gonadectomy 0.6yrs
- Mean age gonadectomy 7.3 yrs
- cf. Cools 2011 2.2 yo
Conclusions

• Phenotype at birth or gonadal differentiation pattern is not associated with risk of gonadoblastoma

• Difficult to predict risk of gonadoblastoma in females with 45,X/46,XY karyotype
 – Recommendation for early gonadectomy in all girls
Future work

• Australia and NZ wide study looking at gonadal pathology in 45,X/46,XY females is currently underway
Acknowledgements

- Multidisciplinary teams involved in patients’ care
- Dr Grahame Smith, Dr Kim Matthews
 - Urology and Gynaecology
- Dr Nicky Graf
 - Histopathology
- CHW Radiology, Histopathology Medical Records
References

• Akbas E et al. Rare types of Turner syndrome: Clinical presentation and cytogenetics in five cases. Lab Medicine 2012; 43(5): 197-204.
• De Groote K et al. Cardiovascular pathology in Males and Females with 45,X/46,XY Mosaicism. PLOS One 2013; 8(2):E54977.