Comparison of interventional outcomes of occupational musculoskeletal disorders

RAMAZZINI PRESENTATION Adelaide 16th May 2016

Dr Pravind Kumar

MBBS MPH FRACGP DRACOG PGDipOHS AFOEM Trainee NSW

Musculoskeletal Disorders(MSD)

- Most common workplace injury in Australia
- Multifactorial causes
- Health effects
- Work Injury is a major factor contributing :
 - *absenteeism
 - *disability
 - *unemployment

Australian Work Health and Safety Strategy 2012-2022

• MSD 1 of 6 national priority work related disorders(Safe Work Australia, 2013)

Priority	Targets by 2022
No. of work related fatalities	↓20%
Incidence rate of claims ≥1week off work	↓30%
Incidence rate of claims for MSD≥1 week off work	↓30%

COSTS

- 2008-09: \$60.6 billion (Safe Work Australia.2013)
- 4.8% of GDP
- Costs in occupational MSD implications:
- ► Economy,employer,employee
- Direct costs: health care bills and income replacement
- Indirect costs: lost productivity and reduced QOL(Illes,Wyatt&Pransky,2012)

Return to work

- Medical intervention goal is to facilitate injured worker to be productive in workforce
- GPs see about 96% of injured workers in Australia (Mazza et al., 2015)
- Limited studies have focussed on MSDs, management and RTW
- Successful RTW rates from occupational injuries range from 29-100% with median of 67% worldwide.(Kong et al., 2012)

Outcome measures

- Continually evolving to meet needs of employees, employers and stakeholders
- Measuring return to work is a complex process.(lles et al.2012)

Perspective	Outcome
Insurer	↓ liability
Employer	effective management/rehab systems
Injured worker	Work contribution

 Outcome data from work related injuries are often from secondary administrative databases which limits types and accuracies of outcomes. (Feuerstein et al. 2000)

Comparison of interventional outcomes of occupational musculoskeletal disorders

- Investigate the relationship between timing of intervention and management for workplace musculoskeletal injury and return to work outcomes.
- Hypothesis :Early intervention in MSD leads to early RTW compared to late intervention

	STUDY DESIGN						
Study period	1 st July 2013 24months	3	0 th June 2015				
	Injury Certification Intervention *Conservative>Non *Non conservative *ED referral ****Lost to follow-up	DATA conservative	Status at final certification. *PID *PMD **Ongoing				
Туре	Cross sectional study Ethical approval Bellberry Ltd						
Setting	Work injuries attending GP clinic in North	n West Sydney					
MSD	Work related Injuries to muscles,tendons,nerves,trauma related soft tissue injuries, lacerations and fractures						
Inclusion criteria	Claims initiated during the study period Claims with multiple injuries						
Intervention	<i>Early</i> : within 4 weeks of injury <i>Late</i> : after 4 weeks of injury						
	Conservative: Observation,Dressing,Pha Nonconservative: Image guided injection	rmacotherapy,physiothera on +/- surgery	py,Suture repair under LA				

DATA

- Demographic(gender, age)
- Occupation
- Injury information(medical diagnosis*,injury management, dates of initial and final workers compensation certificates, duration of modified duties, status at final certification)
 - *Injury types: categorised by common anatomical location and pathology.
 - *Cases lost to follow up included in the data analysis

RESULTS

*Age 30-39y(35%) >50 (23%)

*Anat. Distribution Back (30%,) Wrist/hand (22%)

*Path. Distribution/Age 30-39y (35%) Mech. back (30%)

*Occupation Blue collar 56% Office sales 26%

Time to final certification and intervention

FIGURE 1

FIGURE 2

DAYS	Min	1 st Qu.	Median	Mean	3 rd Qu.	Max	NA's
Absent	0.00	0.00	3.00	17.86	14.00	230.00	19
Modified duty	0.00	14.00	36.00	71.28	104.00	536.00	0
Length of claim	2.0	29.0	92.0	153.1	216.0	898.0	21

Table 1:Grand Cox model

		/		/	//
	Coef	exp(coef)	se(coef)	Z	р
late.interventionTRUE	-0.69182	0.50066	0.3172	-2.18	<u>0.02918</u>
Sex2M	-0.04329	0.95763	0.16244	-0.27	0.78986
OccOffice/sales	0.08599	1.0898	0.17127	0.5	0.6156
OccProfessional/manager	0.29743	1.3464	0.21767	1.37	0.17181
PathFracture	-0.03092	0.96955	0.62569	-0.05	0.96058
PathMechanical back	0.66568	1.94581	0.65191	1.02	0.3072
PathMeniscal Tear	-0.81691	0.44179	0.75913	-1.08	0.28188
PathMuscle tear/Hernia	-0.83764	0.43273	0.79851	-1.05	0.29418
PathOther	1.26504	3.54324	0.63741	1.98	<u>0.04718</u>
PathSoft tissue/Sprain	1.0459	2.84597	0.55356	1.89	0.05884
PathTendinopathy	-0.18842	0.82826	0.5537	-0.34	0.73363
AnatArm	0.07139	1.074	0.40547	0.18	0.86025
AnatNeck	-1.19772	0.30188	0.45458	-2.63	<u>0.00842</u>
AnatBack	-1.29968	0.27262	0.43589	-2.98	<u>0.00287</u>
AnatWrist.hand	-0.4296	0.65077	0.29639	-1.45	0.14722
AnatHip.groin	0.49515	1.64075	0.66245	0.75	0.45479
AnatOther	0.11932	1.12673	0.58834	0.2	0.83929
AnatKnee.leg	-0.28819	0.74962	0.37859	-0.76	0.44653
AnatShoulder	-0.28514	0.75191	0.33915	-0.84	0.40049
Age	-0.02704	0.97333	0.00723	-3.74	<u>0.00018</u>

Likelihood ratio test=76.9 on 20 df, p=1.33 e-08 n= 222, number of events= 199 (24 observations deleted)

Figure 1:Kaplan-Meier curve

	N	Observed	Expected	(O-E)^2/E	(0-E)^2/V	
late.intervention=FALSE	201	185	168.5	1.61	10.9	
late.intervention=TRUE	21	14	30.5	8.90	10.9	

P value ≤ 0.001 REJECT NULL HYPOTHESIS

Chisq= 10.9 on 1 degrees of freedom, p= 0.000951

Discussion

- Delay in acceptance of claims liability (hernia, pre-existing injuries, prior surgery and absence of work related identifiable cause)
- 4 out 5 cases with MSD were able to return to PID.
- Survival curves :late intervention group had longer survival time >longer periods of work absence.

Limitations

BIAS

*Selection

- single clinic,NTD expertise
- under reporting

*Information

- treatment providers
- absence days
- treatment duration
- return to work policies

Future

- THIS STUDY PROVIDES A BASIS:
- + health promotion initiatives in workplace
- + training and education for health providers
- FUTURE STUDIES:
- + Longitudinal study in multicentre setting
- + Impacts of rehabilitation types include costs of injury management

Conclusion

- Early intervention in occupational MSD has a higher chance of return to preinjury duties
- Effective communication and consultation among stakeholders in injury management is vital for a timely injury intervention within first 28 days of injury.

Acknowledgements

Dr Alun Pope

Director Statistical Consulting Service, University of Sydney

- Dr Sandra McBurnie
 - Occupational Physician NSW
- Dr Thaw Naing
 GP/Public Health Physician,NSW
- □ Family(Shal, Pranav and Prashav)

References

- Berecki-Gisolf, J., Clay, F. J., Collie, A., & McClure, R. J. (2012). Predictors of sustained return to work after work-related injury or disease: insights from workers' compensation claims records. *J Occup Rehabil, 22*(3), 283-291. doi:10.1007/s10926-011-9344-y
- Driscoll, T. R., & Hendrie, L. (2002). Surveillance of work-related disorders in Australia using general practitioner data. *Australian and New Zealand Journal of Public Health, 26*(4), 346-351. doi:10.1111/j.1467-842X.2002.tb00183.x
- Feuerstein, M., Marshall, L., Shaw, W. S., & Burrell, L. M. (2000). Multicomponent Intervention for Work-Related Upper Extremity Disorders. *Journal of Occupational Rehabilitation*, 10(1), 71-83. doi:10.1023/A:1009493813003
- Howard, K. J. (2009). Effects of presenteeism in chronic occupational musculoskeletal disorders: stay at work is validated. *J Occup Environ Med*, *51*(6), 724-731. doi:10.1097/JOM.0b013e3181a297b5
- Iles, R. A., Wyatt, M., & Pransky, G. (2012). Multi-Faceted Case Management: Reducing Compensation Costs of Musculoskeletal Work Injuries in Australia. *Journal of Occupational Rehabilitation*, 22(4), 478-488. doi:10.1007/s10926-012-9364-2
- Jezukaitis, P., & Kapur, D. (2011). Management of occupation-related musculoskeletal disorders. Best Practice & Research Clinical Rheumatology, 25(1), 117-129. doi:10.1016/j.berh.2011.01.010
- Kong, W., Tang, D., Luo, X., Yu, I. T. S., Liang, Y., & He, Y. (2012). Prediction of Return to Work Outcomes Under an Injured Worker Case Management Program. *Journal of Occupational Rehabilitation, 22*(2), 230-240. doi:10.1007/s10926-011-9343-z

- Kulin, J., & Reaston, M. (2011). Musculoskeletal disorders early diagnosis: A retrospective study in the occupational medicine setting. *Journal of occupational medicine and toxicology (London, England), 6*(1), 1-1. doi:10.1186/1745-6673-6-1
- Mazza, D., Brijnath, B., Singh, N., Kosny, A., Ruseckaite, R., & Collie, A. (2015). General practitioners and sickness certification for injury in Australia. *BMC Fam Pract, 16*, 100. doi:10.1186/s12875-015-0307-9
- Oakman, J., & Chan, S. (2015). Risk management: Where should we target strategies to reduce workrelated musculoskeletal disorders? *Safety Science, 73*, 99-105. doi:10.1016/j.ssci.2014.11.026
- RACP. (2015). Australian Consensus Statement on the Health Benefits of Work. Retrieved from https://www.racp.edu.au/.../afoem-pos-australian-consensus-statement-on
- SafeWorkAustralia. (2013). Key Work Health and Safety Statistics, Australia 2013. Retrieved from <u>http://www.safeworkaustralia.gov.au</u>

Widanarko, B., Legg, S., Stevenson, M., Devereux, J., Eng, A., Mannetje, A. t., . . . Pearce, N. (2011). Prevalence of musculoskeletal symptoms in relation to gender, age, and occupational/industrial group. *International Journal of Industrial Ergonomics, 41*(5), 561-572. doi:10.1016/j.ergon.2011.06.002

Woolf, A. D., Vos, T., & March, L. (2010). How to measure the impact of musculoskeletal conditions. Best Practice & Research Clinical Rheumatology, 24(6), 723-732. doi:10.1016/j.berh.2010.11.002