Autoantibodies in Idiopathic Inflammatory Myopathies

Vidya Limaye
Rheumatology Department
Royal Adelaide Hospital
Idiopathic Inflammatory Myopathies (IIM)

• Heterogeneous group of systemic *autoimmune* syndromes characterized by *chronic muscle weakness* and striated *muscle inflammation*

• Polymyositis (PM)
• Dermatomyositis (DM)
• Inclusion body myositis (IBM)
• Necrotising Autoimmune Myositis (NAM)
Clinical features

• Systemic conditions with predominant manifestations on skeletal muscle

 • Muscle
 • Joints
 • Lungs – interstitial lung disease
 • GIT
 • Cardiac

• Patterns of muscle weakness

 • PM/DM: symmetrical proximal upper and lower limbs, neck flexors
 • IBM: (asymmetrical) quadriceps weakness ≥ hip flexors, long finger flexors
 • dysphagia
 • DM: cutaneous features
Diagnosis of IIM

- Clinical presentation
- Raised serum muscle enzymes – CK
- Electromyography: myopathic triad
- Muscle biopsy
 - definitive diagnostic test
 - Used to categorise disease

Increasing interest in the role of autoantibodies in classification and prognostication
Role of antibodies in IIM

• Directed to nuclear and cytoplasmic antigens involved in protein synthesis
• Several strong associations between autoantibodies and clinical phenotypes
• Diagnostic markers for disease
• Divide patients into homogeneous subgroups

• Proposals for serological classification of IIM
Negative ANA Does Not Imply Antibody Negativity

Dimitri, Muscle and Nerve, 2007

Homogeneous, diffuse cytoplasmic staining
Myositis-Associated Autoantibodies

<table>
<thead>
<tr>
<th>Autoantibody</th>
<th>Antigen</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-Scl</td>
<td>Unidentified</td>
<td>PM/ DM/ SSc overlap syndrome</td>
</tr>
<tr>
<td>U1-RNP</td>
<td>U1 small RNP</td>
<td>MCTD</td>
</tr>
<tr>
<td>Ro52</td>
<td>RNA protein TRIM21</td>
<td>IIM, pSS, SLE & ILD</td>
</tr>
<tr>
<td>Ku</td>
<td>DNA-binding proteins</td>
<td>DM/PM with SLE/SSc overlap</td>
</tr>
</tbody>
</table>
Myositis-Specific Autoantibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Target</th>
<th>Subset</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetases</td>
<td>ARS</td>
<td>PM/DM</td>
<td>Anti-synthetase syndrome</td>
</tr>
<tr>
<td>Mi-2</td>
<td>NuRD</td>
<td>DM</td>
<td>Shawl, V-neck, Gottron’s</td>
</tr>
<tr>
<td>SRP</td>
<td>SRP 72, 54 kDa</td>
<td>PM/NM</td>
<td>Severe/refractory NM</td>
</tr>
<tr>
<td>SAE</td>
<td>SUMO</td>
<td>DM</td>
<td>ILD, dysphagia</td>
</tr>
<tr>
<td>NXP2</td>
<td>NXP-2</td>
<td>JDM</td>
<td>Calcinosis, ulceration</td>
</tr>
<tr>
<td>TIF-1γ</td>
<td>TIF1γ (p155/140)</td>
<td>DM, JDM</td>
<td>Severe skin, malignancy</td>
</tr>
<tr>
<td>MDA-5</td>
<td>MDA-5</td>
<td>DM</td>
<td>Amyopathic, ILD</td>
</tr>
<tr>
<td>HMGCR</td>
<td>HMGCR</td>
<td>IMNM/NAM</td>
<td>Necrotizing myopathy</td>
</tr>
</tbody>
</table>
Anti-synthetase antibodies

<table>
<thead>
<tr>
<th>Anti-synthetase Ab</th>
<th>tRNA synthetase</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Jo-1</td>
<td>Histidyl</td>
<td>PM, DM +ILD</td>
</tr>
<tr>
<td>Anti-PL-7</td>
<td>Threonyl</td>
<td>PM, DM +ILD</td>
</tr>
<tr>
<td>Anti-PL-12</td>
<td>Alanyl</td>
<td>ILD> myositis</td>
</tr>
<tr>
<td>Anti-EJ</td>
<td>Glycyl</td>
<td>PM>DM +ILD</td>
</tr>
<tr>
<td>Anti-OJ</td>
<td>Isoleucyl</td>
<td>ILD +PM/DM</td>
</tr>
<tr>
<td>Anti-KS</td>
<td>Asparaginyl</td>
<td>ILD> myositis</td>
</tr>
<tr>
<td>Anti-Zo</td>
<td>Phenylalanyl</td>
<td>ILD +PM/DM</td>
</tr>
<tr>
<td>Anti-Ha</td>
<td>tyrosyl</td>
<td>ILD +PM/DM</td>
</tr>
</tbody>
</table>
Anti-Jo-1 Autoantibody

- Directed against histidyl-tRNA synthetase
- Ag: enzyme that catalyzes binding of an amino acid to its tRNA in process of protein synthesis
Anti-synthetase syndrome

- PM or DM
- Interstitial Lung Disease
- Fever
- Arthritis
- Raynauds phenomenon
- Mechanic’s hands
Jo-1 versus non-Jo-1 antisynthetases

• Jo-1
 • more likely muscle involvement
 • arthritis

• Non-Jo1
 • more likely ILD, CTD overlap
 • Raynaud’s phenomenon more common

• Differences between each of the non Jo-1 antisynthetases
 • OJ – arthritis prominent, ILD then myositis
 • EJ: Heliotrope, Gottrons
 • KS: increase CK
South Australian Myositis Database – Autoantibodies detected in 32%

- Biopsy-proven cases of IIM subsequent to 1980
- Central reporting of all adult muscle biopsies in SA in Neuropathology Lab
- DM, PM, IBM, necrotising myopathy
- DNA and serum stored

- Autoantibodies present in 42/130 (32%) myositis patients
Antibodies to Ro52 were the commonest
Ab are more common in DM than PM or IBM

Frequency of Ab mirrored the frequency of DR4

DM (11/17) cf PM (23/70), p = 0.033

DM cf IBM (8/43 =p = 0.002)
Myositis Ab are associated with both HLA DR3 and DR4

Previous reports - linked DR3 with MSA formation in IIM patients.
(Arnett FC, Arthritis Rheum 1996;39(9):1507-18)

<table>
<thead>
<tr>
<th>DRB1</th>
<th>Autoantibody</th>
<th>Odds Ratio</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos (n=37)</td>
<td>Neg (n=81)</td>
<td></td>
</tr>
<tr>
<td>DRB1*03</td>
<td>23 (31%)</td>
<td>23 (14%)</td>
<td>3.3 (1.7, 6.6)</td>
</tr>
<tr>
<td>DRB1*04</td>
<td>13 (18%)</td>
<td>12 (7%)</td>
<td>3.6 (1.5, 8.6)</td>
</tr>
<tr>
<td>Other</td>
<td>38</td>
<td>127</td>
<td>1</td>
</tr>
</tbody>
</table>

DR3 and DR4 are both systematically assoc with autoantibody production in IIM

Limaye V et al, Rheumatol Int. 2012;32(3):611-9
Antibodies in DM
Anti-Mi2

• 11-59% prevalence in DM
• Skin manifestations
• relatively mild disease
• less internal organ involvement
• treatment response - fair
• latitudinal gradient (UV intensity)
Novel Autoantibodies in DM

• Ab in DM often assoc with distinct clinical phenotypes
• Tend to be mutually exclusive
 • specific immune responses may shape different phenotypes

• MDA5
• TIF1 Γ
• NXP2
• SAE
Antibodies to MDA5

• Target antigen: melanoma differentiation-associated gene 5
• 10-48% Asians, 0-13% Caucasians
• Clinically
 • Rapidly progressive ILD
 • Sato, Arthritis Rheum 2005
 • Novel cutaneous phenotype
 • palmar papules
 • cutaneous ulcerations
 • severe vasculopathy
 • Amyopathic DM
• HLA–DRB1*08
Clinical phenotype of IIM with Anti-MDA5

Fiorentino, J Am Acad Derm, 2011
Antibodies to TIF1γ

- Target antigen: transcriptional intermediary factor 1-γ
- Originally reported as anti-p155/p140
- 13-31% DM
- Adults: Ca-associated DM
 - Sensitivity for Ca 78%
 - Specificity for Ca 80%
- Less Raynauds, calcinosis and ILD
- Juvenile DM: no malig but skin ulceration
- DQA1*0301 association
Antibodies to TIF1γ: manifestations according to age

- **Children**
 - Ulceration/vasculitis

- **Young adults**
 - Rash
 - Amyopathic

- **Older adults**
 - Malignancy
 - Myositis
Frequency of Anti-MDA5 and Anti-TIF1γ

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Mean (SD)</th>
<th>M:F</th>
<th>Total</th>
<th>Anti-MDA5 (%)</th>
<th>Anti-TIF1γ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>3-84</td>
<td>50 (19)</td>
<td>24:58</td>
<td>82</td>
<td>21 (26)*</td>
<td>12 (15)</td>
</tr>
<tr>
<td>CADM</td>
<td>3-84</td>
<td>48 (20)</td>
<td>7:24</td>
<td>31</td>
<td>20 (65)**</td>
<td>3 (10)</td>
</tr>
<tr>
<td>CA-assoc DM</td>
<td>48-80</td>
<td>66 (11)</td>
<td>5:7</td>
<td>12</td>
<td>0</td>
<td>7 (58)***</td>
</tr>
<tr>
<td>Classical DM</td>
<td>16-76</td>
<td>47 (17)</td>
<td>12:27</td>
<td>39</td>
<td>1 (3)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>PM</td>
<td>32-70</td>
<td>57 (14)</td>
<td>0:6</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SLE</td>
<td>15-76</td>
<td>50 (15)</td>
<td>5:16</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSc-ILD</td>
<td>30-75</td>
<td>58 (10)</td>
<td>3:23</td>
<td>26</td>
<td>1 (4)</td>
<td>0</td>
</tr>
<tr>
<td>Controls</td>
<td>46-72</td>
<td>54 (6)</td>
<td>4:16</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cancer</td>
<td>48-78</td>
<td>58 (7)</td>
<td>5:15</td>
<td>21</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>

*P<0.05 in DM vs SLE, SSc-ILD, healthy controls. **P<0.005 in CADM vs ca-assoc DM or classical DM without cancer by a chi-square test. ***P<0.005 in cancer-associated DM vs CADM or classical DM without cancer

Hoshino K et al, Rheumatology, 2010
Antibodies to NXP2

• Ag: 140kDa nuclear matrix protein-2
• Frequency
 • <5% adult DM
 • JDM 23-25%
• Most frequent Ab in Italian cohort (17%)
• In JDM:
 • ↑ risk of calcinosis
 • ↑ disease severity

Gunawardena H. Arthritis Rheum 2009
Ceribelli A. Arthritis Res Ther 2012
Antibodies to SAE

- **Ag**: small ubiquitin like modifier activating enzyme (SAE)
- **Frequency**
 - <5% adult DM
 - <1% JDM
- **Clinically**
 - Often cutaneous features first
 - Mild muscle involvement
 - Dysphagia
- **Low freq malignancy and ILD**
- **HLA-DRB1*04-DQA1*03-DQB1*03**
 - Betteridge ZE. Ann Rheum Dis 2009
Low frequency of novel antibodies

Hungarian cohort IIM n=337

- 12 anti-TIF1g
- 4 anti-NXP2
- 4 anti-SAE
- 0 anti-MDA5

SA Myositis Registry n=193

- 3 TIF1g
- 1 anti-NXP2
- 0 anti-MDA5

- Together with Neil McHugh, Zoe Betteridge, Bath, UK

- Bodoki L et al Autoimmune Rev 2014
Antibodies in IBM
Anti-cN1A

- 43kDa muscle autoantigen: cytoplasmic 5’-nucleotidase 1A (cN1A)
- Strengthens role for B-cell mediated autoimmunity in IBM
- IgG anti-cN1A :>90% specificity and 34-70% sensitivity in IBM
- Detection of multiple isotypes increased sensitivity to 76%
 - Greenberg SA Muscle Nerve 2014
- cN1A accumulates in perinuclear regions and rimmed vacuoles in IBM muscle and localises to areas of myonuclear degeneration
- ? Provide a link between dual processes of autoimmunity and myodegeneration
 - Larmen B et al Ann Neurol 2013
- ? Biomarker for IBM
Anti-cN1A: SA Myositis Database

• Detected in 24/69 (35%) patients with IBM*
• IgM isotype most frequent (n=17), IgG (n=13) and IgA (n=5)
• No gender difference: Ab+ve 15/24 female, Ab neg : 27/45 female
• No diff in frequency of malignancy in patients with anti-cN1A (3/20) compared to those without (10/39), p=0.51
• Antibodies to other MSA/MAA were present in a minority (8/56) of patients with IBM and were significantly less prevalent than anti-CN1A (p=0.01)

Necrotising autoimmune myositis

anti-SRP
anti-HMGCR
Antibodies to signal recognition particle (SRP)

- Ribonucleoprotein – targets secretory proteins to endoplasmic reticulum
- Anti-SRP detected in 4-6% of patients with myositis

- Clinically
 - Rapidly progressive weakness
 - Marked elevation of CK
 - Cardiac involvement
 - Muscle biopsy typically shows necrotizing myopathy
 - Traditionally - poor prognosis/ response to treatment
Anti-HMGCR and necrotising autoimmune myositis

- Statins can trigger an immune-mediated necrotizing myopathy which persists despite statin discontinuation
 - suggests immune mechanisms involved

- Statins up-regulate HMGCR
- Regenerating muscle fibres express high levels of HMGCR
- linked with anti-100kDa proteins –since identified as HMGCR
Anti-HMGCR antibodies – what is already known?

• Detected in 6% of 750 patients with suspected IIM (Johns Hopkins Centre)

• Rarely detected in patients on statins with self-limited MSK symptoms

• Testing for anti-HMGCR by ELISA
 • high sensitivity (94%)
 • high specificity (99%)

• Levels of anti-HMGCR correlate with CK levels and proximal weakness

• Anti-HMGCR persists despite clinical improvement following immunosuppressive therapy.

• Testing for anti-HMGCR - proposed to be useful diagnostically in patients with suspected statin-mediated immune necrotizing myopathy
SA Myositis Database: Anti-HMGCR detected 9% IIM/ NM

• Detected in 19/207 (9.2%) sera from patients with IIM/NM*

• Anti-HMGCR was not detected in any of 151 sera from a general reference Western Australian Busselton population.
Anti-HMGCR is equally distributed among IIM subsets

<table>
<thead>
<tr>
<th>IIM Subgroup</th>
<th>Anti-HMGCR +ve</th>
<th>Anti-HMGCR -ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM (n=26)</td>
<td>1 (4%)</td>
<td>25 (96%)</td>
</tr>
<tr>
<td>PM (n=74)</td>
<td>8 (11%)</td>
<td>66 (89%)</td>
</tr>
<tr>
<td>IBM (n=62)</td>
<td>6 (10%)</td>
<td>56 (90%)</td>
</tr>
<tr>
<td>IIM NOS (n=13)</td>
<td>1 (8%)</td>
<td>12 (92%)</td>
</tr>
<tr>
<td>Necrotizing (n=23)</td>
<td>2 (9%)</td>
<td>21 (91%)</td>
</tr>
<tr>
<td>Other (n=9)</td>
<td>1 (11%)</td>
<td>8 (89%)</td>
</tr>
<tr>
<td>Total (n=207)</td>
<td>19 (9%)</td>
<td>188 (91%)</td>
</tr>
</tbody>
</table>

The prevalence of anti-HMGCR was comparable among subsets of IIM (p=0.95).
Associations of anti-HMGCR

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Anti-HMGCR +ve</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
<th>PPV (95% CI)</th>
<th>NPV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statin use</td>
<td>16/52 (31%)</td>
<td>39 (9, 361)</td>
<td><10^-8</td>
<td>0.31 (0.19, 0.45)</td>
<td>0.99 (0.96, 1)</td>
</tr>
<tr>
<td>No statin use</td>
<td>1/130 (0.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR11 positive</td>
<td>10/24 (42%)</td>
<td>50 (11, 486)</td>
<td><10^-8</td>
<td>0.42 (0.22, 0.63)</td>
<td>0.99 (0.95, 1)</td>
</tr>
<tr>
<td>DR11 negative</td>
<td>1/105 (0.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR11+ve & statin</td>
<td>9/10 (90%)</td>
<td>80 (10, 1108)</td>
<td><10^-7</td>
<td>0.90 (0.55,1)</td>
<td>0.95 (0.75, 1)</td>
</tr>
<tr>
<td>DR11 –ve & statin</td>
<td>1/20 (5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>11/77 (14%)</td>
<td>2.5 (1.0, 6.6)</td>
<td>0.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>8/130 (6%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limaye V et al. Muscle Nerve 2014
Anti-HMGCR antibodies – role of statins?

• Among anti-HMGCR positive pts, preceding statin exposure in
 • 24/26 (92.3%) Mammen A et al 2011
 • 20/45 (44.4%) Allenbach et al Medicine 2014
 • 16/19 (84%) Limaye et al 2014

• Statins \uparrow HMGCR expression DRB1*1101 Anti-HMGCR immune response

Statin-naïve patients – what triggers disease?
 natural supplements which reduce cholesterol? Trigger HMGCR expression
Statins found in food products and supplements
 oyster mushrooms – lovastatin
 red yeast – peking duck glaze
 Other environmental triggers
Conclusions

• Detection of autoantibodies in IIM: role for B-cell mediated autoimmunity
• A number of these antibodies are under genetic control

• Disease monitoring – Do levels of autoantibodies correlate with disease activity?
• Predictive value for development of disease

• Precise role in pathogenesis
Conclusions

• Antibodies are markers for distinct clinical phenotypes
• In clinical practice autoantibodies may help to establish a diagnosis
• May prompt
 • more intensive therapy
 • Screening for associated features eg ILD, malignancy
• May enable prognostication
 • autoantibodies may correlate with disease outcome
 • Differential risk for ILD, malignancy, cutaneous features
ACKNOWLEDGEMENTS

Neuropathology Dept, SA Pathology
Peter Blumbersg
Sophia Otto
Caroline Smith
Barbara Koszkya

SA Clinicians
Peter Roberts Thomson
Les Cleland
Susanna Proudman
Sally Cox
Sajini Basnayake
SA neurologists

Boston
Steven Greenberg

Statistical assistance
Sue Lester

PathWest, Perth Aust
Peter Hollingsworth
Chris Bundell

Anti-HMGCR

Anti-cN1A

NXP2, TIF1g, SAE, MDA5

Myositis patients SA

Bath, UK
Neil McHugh
Zoe Betteridge