

Outcomes for Critically Ill Sepsis Survivors

Yasmine Ali Abdelhamid Discipline of Acute Care Medicine, University of Adelaide Intensive Care Unit, Royal Adelaide Hospital Adelaide, South Australia

Each year ~ 130,000 Australians are admitted to ICUs at a cost of \$3 billion.

Sepsis is a major public health concern

• 1 in 10 patients admitted to an Australian or NZ ICU

• Annual cost of sepsis in the USA is \$16.7 billion

• Incidence projected to increase 1.5% annually with increasing comorbidities and organism resistance

Finfer et al, Intensive Care Med, 2004 Kaukonen et al, JAMA, 2014 Angus et al, Crit Care Med, 2001

Surviving Sepsis ··· Campaign

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Goal-Directed Resuscitation for Patients with Early Septic Shock

The ARISE Investigators and the ANZICS Clinical Trials Group*

Research

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Mortality Related to Severe Sepsis and Septic Shock Among Critically III Patients in Australia and New Zealand, 2000-2012

Kirsi-Maija Kaukonen, MD, PhD, EDIC; Michael Bailey, PhD; Satoshi Suzuki, MD; David Pilcher, FCICM; Rinaldo Bellomo, MD, PhD

IMPORTANCE Severe sepsis and septic shock are major causes of mortality in intensive care unit (ICU) patients. It is unknown whether progress has been made in decreasing their mortality rate. Editorial page 1295
Supplemental content at
jama.com

OBJECTIVE To describe changes in mortality for severe sepsis with and without shock in ICU patients.

DESIGN, SETTING, AND PARTICIPANTS Retrospective, observational study from 2000 to 2012 Including 101 064 patients with severe sepsis from 171 ICUs with various patient case mix in Australia and New Zealand.

MAIN OUTCOMES AND MEASURES Hospital outcome (mortality and discharge to home, to other hospital, or to rehabilitation).

RESULTS Absolute mortality in severe sepsis decreased from 35.0% (95% C), 33.2%-36.8%; 949/2708) to 18.4% (95% C), 17.8%-19.0%; 2300/12 512; P < .001), representing an overall decrease of 16.7% (95% C), 14.8%-18.6%), an annual rate of absolute decrease of 13%, and a relative risk reduction of 47.5% (95% C), 44.1%-50.8%). After adjusted analysis, mortality decreased throughout the study period with an odds ratio (OR) of 0.49 (95% C), 0.46-0.52) in 2012, using the year 2000 as the reference (P < .001). The annual decline in mortality did not differ significantly between patients with severe sepsis and those with all other diagnoses (OR, 0.94 [95% C), 0.94-0.95] vs 0.94 [95% C], 0.94-0.94]; P = 37). The annual increase in rates of discharge to home was significantly greater in patients with severe sepsis compared with all other diagnoses (OR, 1.03 [95% C], 1.02-1.03] vs 1.01 [95% C], 1.01-10]; P < .001). Conversely, the annual increase in the rate of patients discharged to rehabilitation facilities was significantly bets in severe sepsis compared with all other diagnoses (OR, 1.08 [95% C), 1.07-1.09] vs 1.09 [95% C], 1.09-1.10]; P < .001). In the absence of comorbidities and older age, mortality was less than 5%.

CONCLUSIONS AND RELEVANCE In critically ill patients in Australia and New Zealand with severe sepsis with and without shock, there was a decrease in mortality from 2000 to 2012. These findings were accompanied by changes in the patients of discharge to home, rehabilitation, and other hospitals.

Author Affiliations: Australian and New Zealand Intensive Care Research Centre (ANZIC RC), Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (Kaukonen, Balley, Pilcher, Bellomo): Critical Care Research Group, Intensive Care Unit, Helsinki University Central Hospital. Helsinki, Finland (Kaukonen): Intensive Care Unit, Austin Health, Heidelberg, Australia (Suzuki, Bellomo): ANZICS Centre for Outcome and Resource Evaluation CORE, Melbourne, Australia (Picher): Department of Intensive Care, The Alfred Hospital, Melbourne, Australia (Pichor)

Figure 1. Mean Annual Mortality in Patients With Severe Sepsis

Kaukonen et al., JAMA, 2014

Burden of sepsis survivorship

- Post-acute mortality
- Readmissions and healthcare use
- Functional disability
- Quality of life
- Cognitive impairment
- Renal outcomes
- Recurrent infections
- ?Interventions

Sepsis is associated with post-acute mortality

Causal link or confounders?

Outcomes are a complex interplay between...

- Patient demographics
- Comorbidities & functional status
- Risk factors for critical illness
- Treatments in ICU
- Critical illness itself

	Random effects meta-analysis of post acute mortality					
Study	Recruitment Year	9 Post-acute Mort (95% CI)	6 Weight			
Consensus						
Yende S et al (9)	2001-2003	16.28 (14.61, 17.94) 2	.54			
Davidson TA et al (34)	1994-1996	3.36 (0.12, 6.60) 2	.42			
Linder A et al (36)	2000-2004	13.59 (11.50, 15.69) 2	.52			
Quartin AA et al (38)	1983-1986	23.99 (21.83, 26.14) 2	.51			
Yende S et al (40)	2002-2006	 22.30 (21.34, 23.26) 	.58			
Yealy DM et al (43)	2008-2013	 21.10 (18.92, 23.29) 	.51			
Forceville X et al (44)	2002-2004	20.69 (5.95, 35.43) 1	.07			
Poulsen JB et al (46)	2006-2007	6.98 (3.17, 10.78) 2	.37			
Carlsen S et al (47)	2007	18.94 (12.26, 25.62) 2	.00			
Regazzoni CJ et al (48)	2002-2003	29.17 (16.31, 42.03) 1	.24			
Wang HE et al (49)	2003-2007	14.02 (11.84, 16.21) 2	.51			
Angus DC et al (63)	1998-2000	17.57 (15.76, 19.39) 2	.54			
Carl DE et al (64)	2000-2004	17.69 (11.52, 23.86) 2	07			
Karlsson S et al (65)	2004-2005	12.55 (9.56, 15.55) 2	.45			
Laterre PF et al (66)	2002-2004	16.38 (15.13, 17.63) 2	.56			
Lee H et al (67)	1996-1999	7,75 (5,88, 9,62) 2	.53			
Lopes JA et al (68)	2002-2007	10.80 (7.85, 13.75) 2	45			
Opal SM et al (69)	2006-2010	15.96 (14.34, 17.58) 2	.55			
Perl TM et al (70)	1986-1990	14.00 (7.20, 20.80) 1	.99			
Puskarich M et al (71)	2004-2007	21.05 (16.32, 25.79) 2	.26			
Seldelin JB et al (72)	NB	25.40 (14.65.36.15) 1	.47			
Shapiro Ni et al (73)	2000-2001	16 12 (14 82, 17 41) 2	56			
Vasile VC et al (74)	2001-2006	7 02 (5 37 8 66) 2	55			
Subtotal (I-squared = 96.0	%, p = 0.000)	 15.49 (13.14, 17.83) 	2.25			
Claims/ICD codes						
Prescott HC et al (37)	1998-2005	31.95 (29.58, 34.31) 2	.50			
Llu V et al (57)	2010	24.80 (23.73, 25.86) 2	.57			
Braun L et al (75)	1995-1998	15.49 (14.16, 16.82) 2	.56			
Ou SY et al (76)	2000-2010	12.90 (12.62, 13.18) 2	.59			
Subtotal (I-squared = 99.8	1991–2000 %, p = 0.000)	23.05 (14.09, 32.00) 1	2.80			
Peritonitis						
Utzolino S et al (50)	NR	16.43 (12.14, 20.73) 2	.31			
Hynninen M et al (86)	2001-2003	3.68 (0.79, 6.57) 2	.46			
Subtotal (I-squared = 95.7	%, p = 0.000)	9.95 (-2.54, 22.45) 4	.77			
Pathogen plus Bates DW et al (33)	1988-1990	15 98 (11 97 18 80) 2	41			
Lelbovici L et al (35)	1988-1992	22.00 (20 18 23 82) 2	54			
Laupland KB et al (45)	1999-2002	10.76 (6.92 14.59) 2	36			
Jacobsson G et al (52)	2003-2005	12 00 (2 99 21 01) 1	69			
Drawry AM at al (78)	2010-2012	12 24 (8 73 15 75)	40			
Eatkenbeuer C et al (79)	1997-2000	12.68/8.98.16.07) 2	91			
Sasse KC et al (80)	1987-1991	20.26 (13.89, 26.63) 2	05			
Subtotal (I-squared = 88.6	%, p = 0.000)	15.18 (10.94, 19.43) 1	5.74			
Pneumonia		-				
Yende S et al (39)	1997-1998	8.49 (3.18, 13.80) 2	.19			
Jonnstone J et al (51)	2000-2002	16.08 (14.84, 17.31) 2	.67			
Adamuz J et al (82)	2007-2011	 6.55 (5.25, 7.84) 	.56			
Brancati FL et al (83)	1988-1989	21.28 (14.52, 28.03) 1	.99			
Hsu JL et al (84)	2003-2007	20.70 (20.36, 21.04) 2	.59			
Reade MC et al (85)	2001–2003 %, p = 0.000)	17.32 (15.73, 18.90) 2 15.00 (9.69, 20.32) 1	4.44			
Subiotal (I-squared = 99.0						
Overall (I-squared = 98.99	6, p = 0.000)	16.12 (14.13, 18.10) 1	00.00			

Shankar-Hari et al., Crit Care, 2016

Causal link or confounders?

- Not all studies reported non-sepsis control arm comparisons
 - Sepsis not consistently associated with mortality in studies with control arm
- Which control?
 - Non-sepsis ICU vs hospitalised vs general population
- Older age, male sex, comorbidities all independent predictors of mortality in sepsis survivors

"Epidemiological criteria for a causal relationship were not consistently observed."

Shankar-Hari et al., Crit Care, 2016

Readmissions and health care utilisation

- More than double the days in an inpatient facility in the year postdischarge compared to year prior
- Greater mortality than non-sepsis cohort
 - 44% vs 31%
 - Fewer days alive at home

Prescott et al., Am J Respir Crit Care Med, 2014

Readmissions and health care utilisation

TABLE 2. Hospital-Based Acute Care Use in 269 Survivors of Septic Shock

Outcomes	n (%)
Hospital readmissions	
30-day hospital readmission	63 (23.4)
60-day hospital readmission	89 (33.1)
90-day hospital readmission	100 (37.2)
ED visits (treat-and-release encounters)	
30-day ED visitª	14 (5.2)
Hospital-based acute care postdischarge	
30-day ED visit or readmission	75 (27.9)⁵

TABLE 3. Readmission Diagnoses Following Hospitalization for Septic Shock

Readmission diagnoses potentially related sepsis hospitalization, <i>n</i> (%)	to prior			
Infectiona	29 (46.0)			
Cardiovascular and thromboembolic ^b	11 (17.5)			
Acute kidney injury ^c	4 (6.4)			
Complications of devices	2 (3.2)			
Other ^d	3 (4.8)			
Readmission unrelated to prior hospitalization, n (%)				
Related to comorbid condition ^e	14 (22.2)			
	Total: <i>n</i> = 63			

Ortego et al., Crit Care Med, 2015

Functional decline that persists for years

CARING FOR THE CRITICALLY ILL PATIENT

Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis

Iwashyna et al., JAMA, 2010

Functional decline that persists for years

Mean 1.5 new functional limitations post-sepsis • Worse if no limitations at baseline

 Only 0.5 new limitations in nonsepsis group

Declines persisted for at least 8 years. Sepsis heralded a more rapid rate of developing limitations.

Iwashyna et al., JAMA, 2010

- Critical illness polyneuropathy affects ~ 50% of ICU survivors
- Axonal degeneration
- Multiple mechanisms
- Sepsis, inflammation & multiorgan failure strongly associated

Kress et al., N Engl J Med, 2014 Zink et al., Nat Rev Neurol, 2009

Peripheral neuropathy is persistent

• 1/3 of all patients affected by critical illness polyneuropathy remain so severely limited that they still require assistance with ADLs 12 months later.

• Resolution is slow.

Koch et al., Muscle Nerve, 2014

Cognitive Impairment

Error bars indicate 95% confidence intervals (CIs); IQR, interquartile range.

Iwashyna et al., JAMA, 2010

Cognitive impairment persists

Pandharipande et al., NEJM, 2013

Renal Failure

- Sepsis implicated in 50% of AKI requiring dialysis in ICU.
- Patients with AKI who require renal replacement therapy have high short-term mortality (> 40%).
- Physical impairment & reduced mental health 3 years post-ICU discharge.

Uchino et al., JAMA, 2005 Korkeila et al., Intensive Care Med, 2000 Ahlstrom et al., Intensive Care Med, 2005 Delannoy et al., Intensive Care Med, 2009

Acute renal failure in sepsis is associated with long-term mortality & morbidity

Gallagher et al., PLoS Med, 2014

Acute renal disease in ICU leads to persistent renal disease

• Chronic albuminuria present in almost half of those alive at 4 years.

- Albuminuria is an independent risk factor for:
 - cardiovascular disease
 - later requirement for dialysis
 - death

Gallagher et al., PLoS Med, 2014 Astor et al., Kidney Int, 2011 Klausen et al., Circulation, 2004

Infection risk

- Survivors of sepsis have three-fold greater infection risk compared to survivors admitted to ICU with non-infectious conditions
 - Predominantly pneumonia (vs UTIs in control group)
 - More likely opportunistic pathogens pseudomonas and candida species

Persistent inflammation

• Survivors of community-acquired pneumonia have high levels of IL-6 and IL-10 at hospital discharge.

• Associated with increased 1-year mortality.

Yende et al., Am J Respir Crit Care Med, 2008

Hospitalization Type and Subsequent Severe Sepsis

Hallie C. Prescott^{1,2}, Robert P. Dickson¹, Mary A. M. Rogers^{1,2}, Kenneth M. Langa^{1,2,3,4}, and Theodore J. Iwashyna^{1,2,3,4}

¹Department of Internal Medicine and ²Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan; ³VA Center for Clinical Management Research, HSR&D Center of Innovation, Ann Arbor, Michigan; and ⁴Institute for Social Research, Ann Arbor, Michigan

Dysbiosis & subsequent sepsis

• Hospitalisation is associated with microbiome perturbation

Prescott et al., Am J Respir Crit Care Med, 2014

Dysbiosis & subsequent sepsis

- Rate of sepsis increased 90 days after hospital discharge
- Degree of increased risk correlates with type of hospitalisation

Table 2. Probabilities of 90-Day Readmissions for Severe Sepsis and Nonsepsis Diagnoses

Index Hospitalization	Readmissions for Severe Sepsis Unadjusted Adjusted* Probability (95% CI) Probability (95% CI) [†]		Readmissions for Nonsepsis Diagnoses Unadjusted Adjusted* Probability (95% CI) Probability (95% CI)	
Ioninfection-related hospitalization	3.7% (3.6–3.9%)	4.1% (3.8–4.4%)	31.7% (31.0–32.5%)	33.1% (32.4–33.7%)
nfection-related hospitalization	8.4% (7.7–9.1%)	7.1% (6.6–7.6%)	34.7% (33.7–35.7%)	32.7% (31.9–33.6%)
Iospitalization with CDI	16.8% (12.2–21.4%)	10.7% (7.7–13.8%)	37.9% (32.7–43.3%)	32.4% (27.8–37.0%)

Prescott et al., Am J Respir Crit Care Med, 2014

Psychological consequences are common

• Depression

• Anxiety

• Post-traumatic stress

• Family effects

Angus et al., Intensive Care Med, 2003 Davydow et al., Int Rev Psychiatry, 2009 Herridge et al., N Engl J Med, 2011

Potential interventions

BMJ Open IMPOSE (IMProving Outcomes after Sepsis) – the effect of a multidisciplinary follow-up service on health-related quality of life in patients postsepsis syndromes – a double-blinded randomised controlled trial: protocol

Jennifer D Paratz,^{1,2,3,4} Justin Kenardy,⁵ Geoffrey Mitchell,⁶ Tracy Comans,⁷ Fiona Coyer,⁸ Peter Thomas,^{1,2,4} Sunil Singh,⁹ Louise Luparia,^{1,3} Robert J Boots^{1,2}

Long-Term Patient Outcomes After Prolonged Mechanical Ventilation: The Towards Recover Study

M. S. Herridge¹, L. M. Chu², A. L. Matte², L. Chan³, G. Tomlinson², N. D. Ferguson⁴, S. Mehta⁵, J. Friedrich⁴, N. Adhikari⁶, R. Fowler⁷, F. Lamontagne⁸, J. C. Rudkowski⁹, H. Meggison¹⁰, N. Ayas¹¹, Y. Skrobik¹², J. Batt¹³, C. Dos Santos¹³, J. Flannery¹⁴, S. Abbey², G. D. Rubenfeld¹⁵, D. C. Scales¹⁶, T. Sinuff⁷, B. Cuthbertson¹⁷, E. Fan¹⁸, A. S. Slutsky¹⁹, G. Leung²⁰, A. Moody¹⁷, M. Levasseur²¹, M. Bayley¹⁴, C. Lee¹⁸, V. Lo², S. Mathur³, A. Tan², C. Tansey⁴, M. E. Wilcox²², J. C. Marshall²³, D. J. Cook²⁴, J. I. Cameron³, Canadian Critical Care Trials Group

Further Research

- Mechanisms leading to cognitive impairment and functional disability
- Interventions
- Studying elderly and young cohorts separately
- Using longer term survival and functional outcomes in studies rather than the traditional 28-day mortality

Conclusions

• Intensive care treatment saves lives in sepsis but...

- Significant burden of survivorship
- Sepsis may be a sentinel event
- Under recognised public health problem with major implications for patients, families and the healthcare system
- Emerging data can inform discussions about goals of care
- Interventions to improve outcomes in this group are urgently needed

