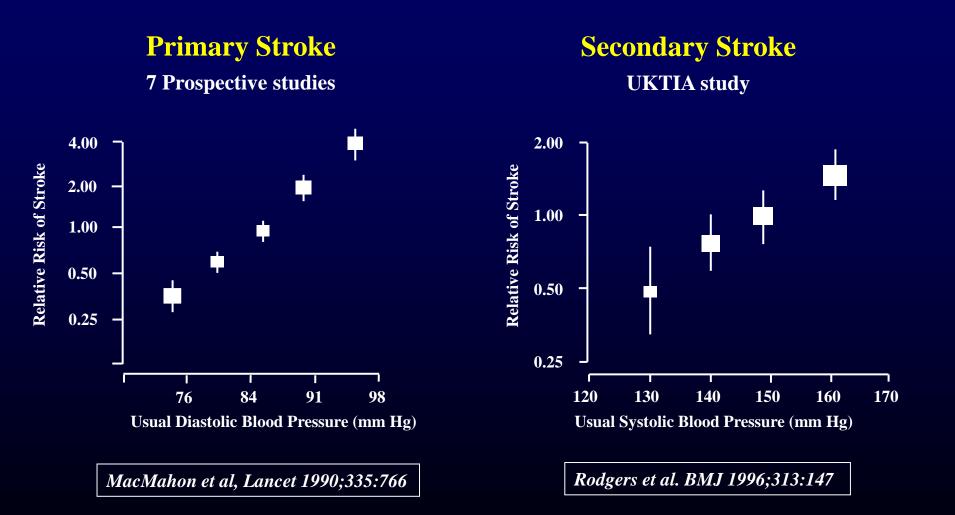
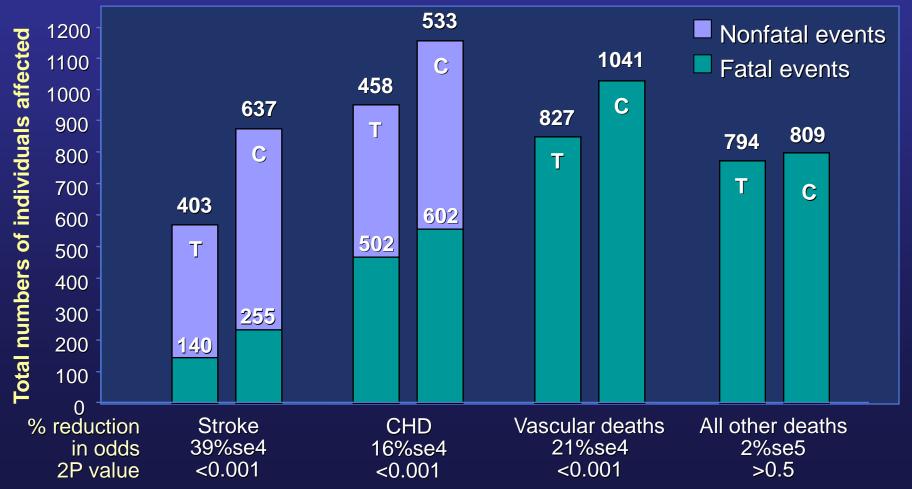
STROKE and BLOOD PRESSURE: PREVENTION AND TREATMENT

Cottrell Memorial Lecture RACP annual Scientific Meeting Adelaide, May , 2016

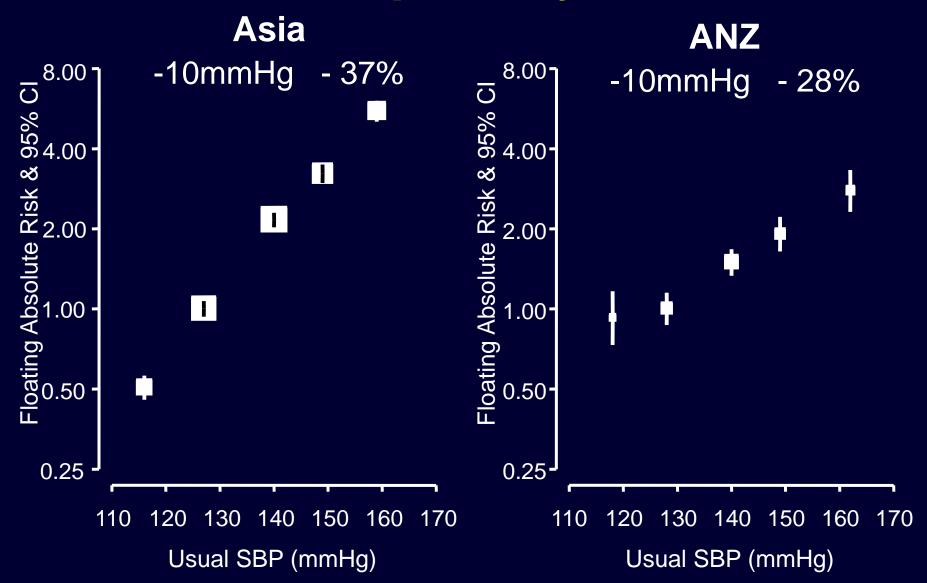

John Chalmers The George Institute for Global Health The University of Sydney

OUTLINE OF TALK

Based on studies conducted with colleagues at George institute in last 20 years

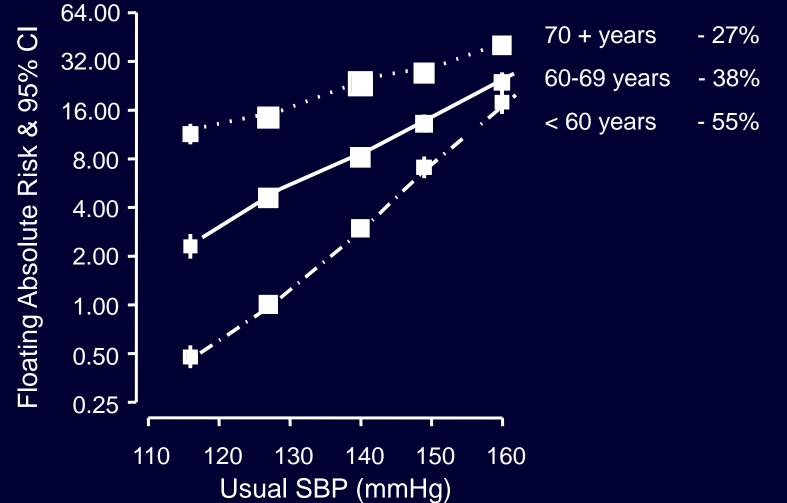

- Association of Stroke and BP
- PROGRESS trial : prevention of Recurrent Stroke
- INTERACT2 trial : BP Lowering for Acute Intracerebral Haemorrhage (ICH)
- ENCHANTED trial in Acute Ischaemic Stroke : dose of rtPA, and BP lowering in first few hours
- Take home messages

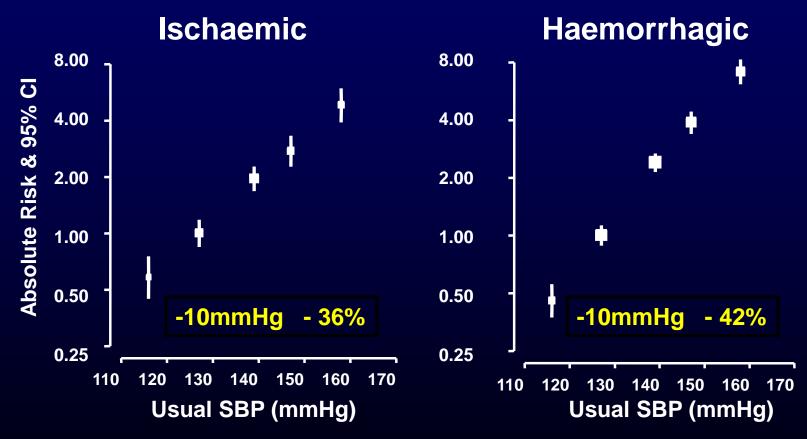
BP and Stroke Risk



Randomized Trials of Antihypertensive Treatment (Collins, MacMahon et al Lancet 1990)

T = treatment 52,348 patients, SBP diff 10–12 mm Hg, DBP diff 5–6 mm Hg C = control Follow-up 5 years


Asia Pacific Cohort Studies Collaboration (44 cohorts, 9 countries) SBP and primary stroke


Asia Pacific Cohort Studies Collaboration SBP and primary stroke

425, 251 participants, 4,708 strokes, 3.2M person-years

-10mmHg

BP and Stroke Risk (From APCSC)

APCSC. 2003

Population attributable fractions for stroke

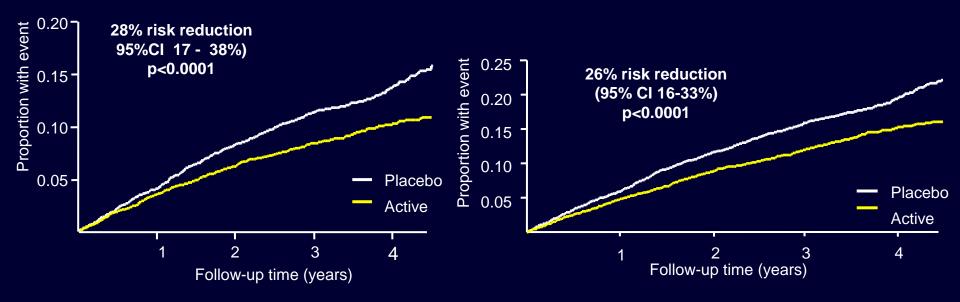
Blood pressure	55-75%
Cholesterol	25-35%
High body mass index	20-30%
Low fruit & vegetables	20-30%
Physical inactivity	10-20%
Tobacco	10-20%
Alcohol	<5%
Urban air pollution	<5%
Lead exposure	<5%

World Health Report 2002

WHO/ISH Hypertension and Stroke

25 May 1993 NARA (JAPAN)

PERINDOPRIL PROTECTION AGAINST RECURRENT STROKE STUDY

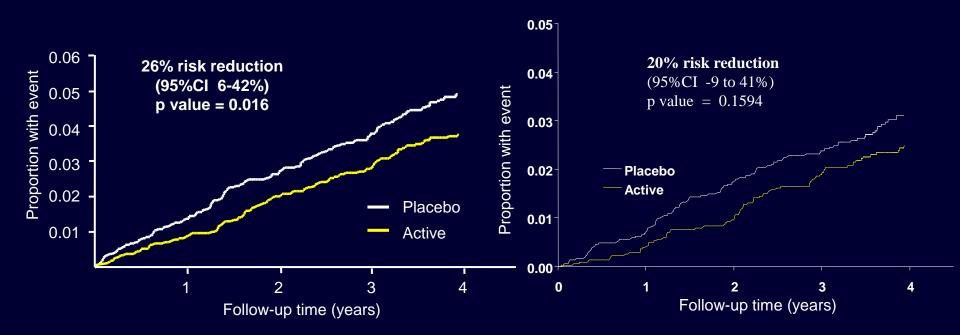

Aim

To determine balance of benefits and risks conferred by an ACE inhibitor based BP lowering regimen (perindopril + indapamide) among patients with a history of stroke or TIA and a wide range of BP at entry. *Funded by* NHMRC and Servier

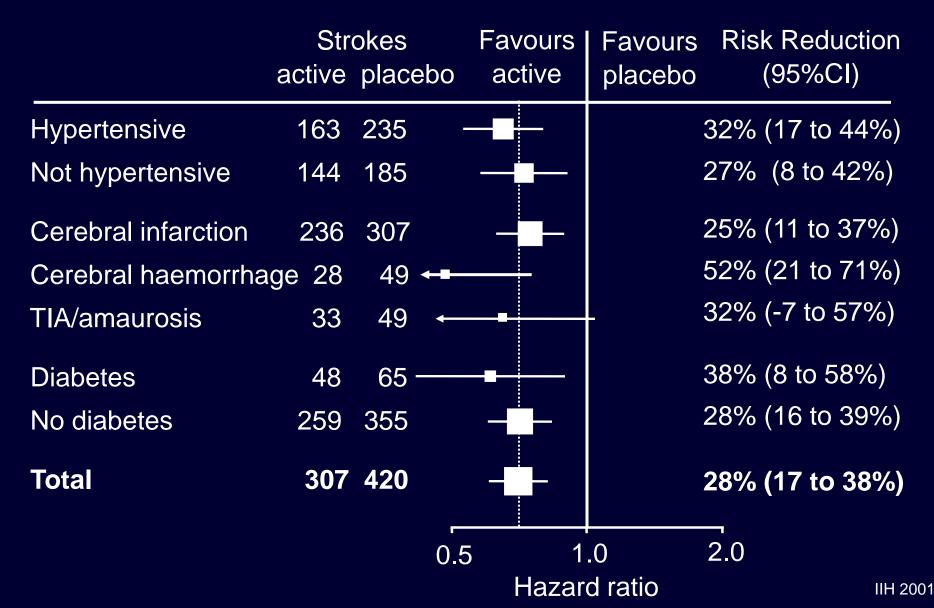
PROGRESS Major outcomes

Stroke

Major Vascular Events



BP Lowering in patients with previous stroke or TIA
6105 patients:10 countries: Europe, Asia, ANZ


PROGRESS Major outcomes

Major Coronary Events

Heart Failure

Stroke by medical history

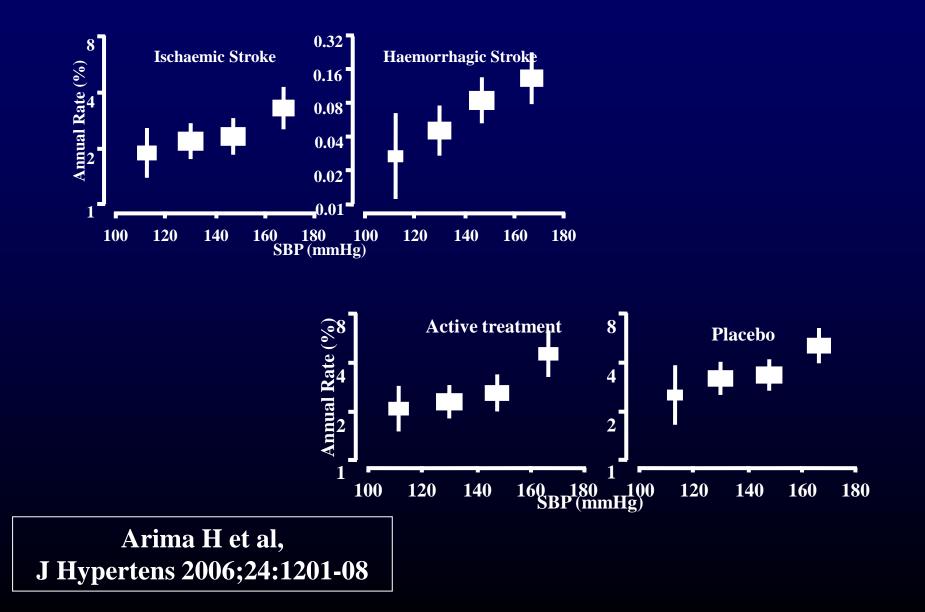
Stroke severity and subtype

		okes placebo	Favours active	Favours placebo	Risk reduction (95%CI)
Fatal/disabling	123	181 -		33	3% (15 to 46%)
Other stroke	201	262		24	₩ (9 to 37%)
Ischaemic stroke	246	319		24	1% (10 to 35%)
Cerebral haemorrhage	e 37	74 🔶		50	0% (26 to 67%)
Stroke type unknown	42	51	-	18	8% (-24 to 45%)
Total	307	420		28	8% (17 to 38%)
		C).5 1. Hazar	.0 2 rd ratio	¬ 2.0

Summary of benefits

PROGRESS established benefits of a BP lowering regimen involving ACEI (perindopril) and diuretic (indapamide) among patients with stroke or TIA for the prevention of:

- Secondary stroke
- Primary myocardial infarction
- Total major vascular events


Absolute benefits

Effects of combination therapy with perindopril and indapamide:

 One fatal or major nonfatal vascular event prevented among every 11 patients (95% CI 9-16) treated for five years (about 2% per year)

PROGRESS

PROGRESS: Risk of recurrent Stroke by Achieved SBP

PROGRESS Collaborative Group

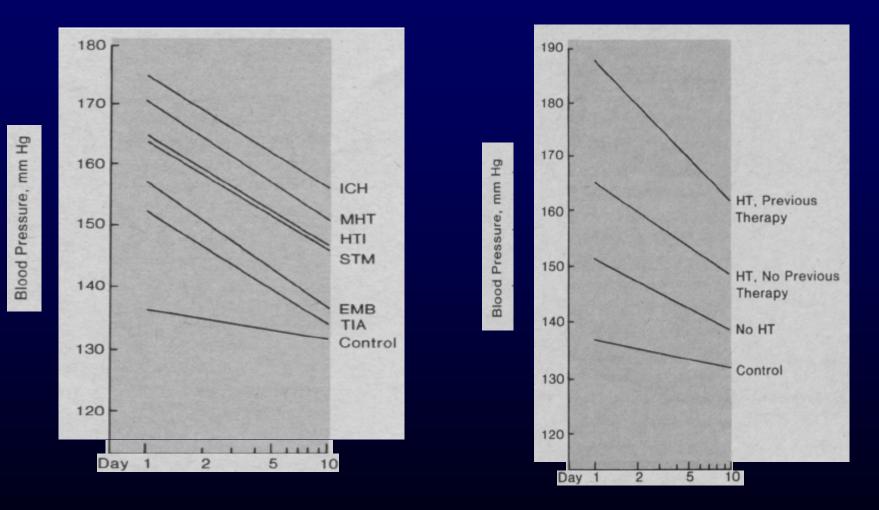
Institute for International Health www.iih.org/progress

EPIDEMIOLOGY OF BLOOD PRESSURE IN ACUTE STROKE

EPIDEMIOLOGY OF BLOOD PRESSURE IN ACUTE STROKE Situation - Early 21st century

- 1. Early Hypertensive response is v common
- 2. Concerns re J-shaped curve for BP & and adverse outcomes
- 3. The J occurs at lower values for ICH than IST
- 4. Much observational evidence suggested benefit from lower BP in acute stroke
- 5. Not matched by randomised trial evidence
- 6. Much more research needed

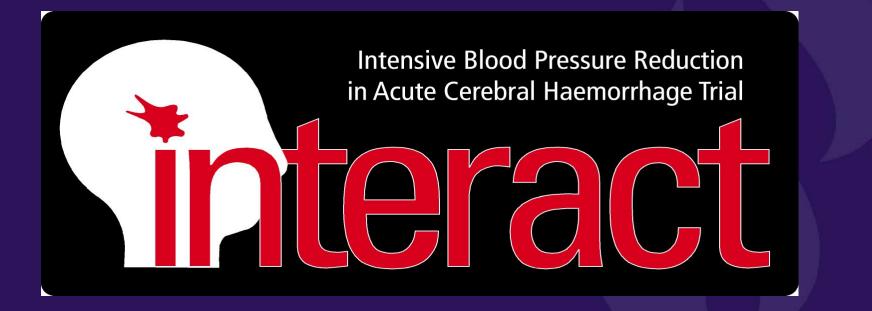
The early hypertensive response (>140/90) in acute stroke-first 48 hours


- 70% SBP in Acute Stroke in US National Hospital Ambulatory Care Survey (1)
- 82% SBP in Isch stroke in Int Stroke trial (2)
- 75% SBP in Ischaemic Stroke in Chinese CAST Trial (3)

BP settles over a few days

1. Quereshi. Amer J Emerg Med 2007;25:32-38

- 2 . Leonardi-Bee. Stroke 2002;33:1315-20
- 3. CAST Collab Gp. Lancet 1997;349:1641-49


SBP Changes in 1st 10 days after Stroke

Wallace and Levy JAMA 1981; 246: 2177-2180

Supported by NHMRC program grant

Pilot phase completed in 2009 in 404 patients in Australia and China, with acute intra-cerebral haemorrhage –established safety and feasibility.

The second, main phase, INTEnsive blood pressure Reduction in Acute Cerebral haemorrhage Trial

2839 patients from 21 countries across Europe, N and S America, Asia, Australia (NEJM 2013;368:2355-65)

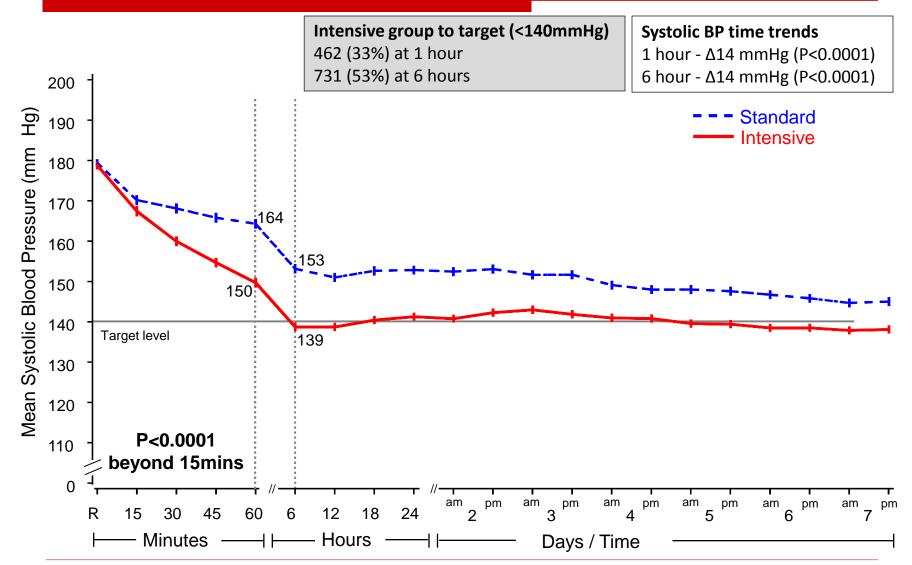
for the INTERACT2 Investigators at 144 hospitals in 21 countries

Primary Objective—to test the hypothesis

That a management Strategy of:

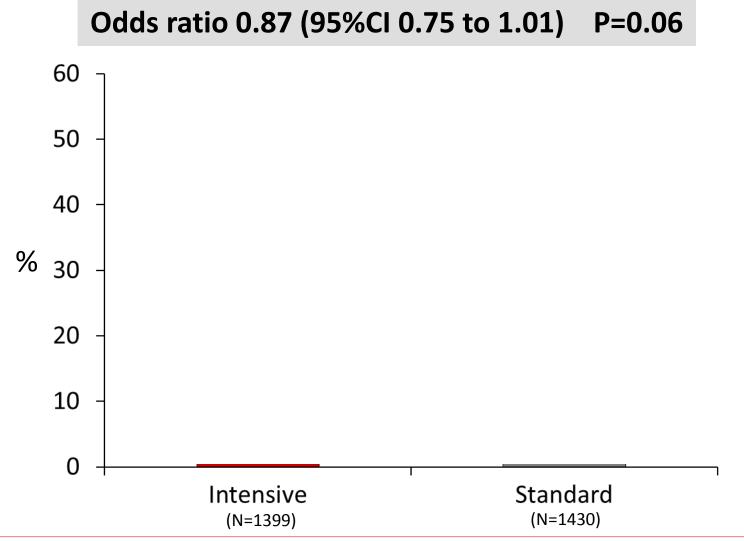
- early intensive blood pressure (BP) lowering (target of <140 mmHg systolic) as compared to the</p>
- guideline-recommended 'standard' control of BP (target of <180 mmHg systolic) improves</p>
- Would improve survival free of major disability at 90 days, in acute intracerebral haemorrhage (ICH)

Standardised treatment protocols – locally available intravenous (IV) BP lowering agents of physician's choice

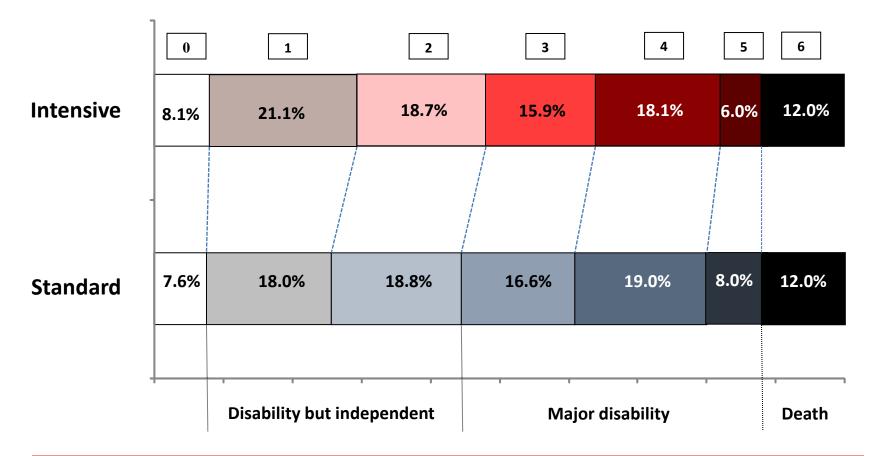

Patients: Acute ICH, confirmed by CT/MRI, Randomised < 6 hours, SBP 150-220mmHg</p>

PROBE design

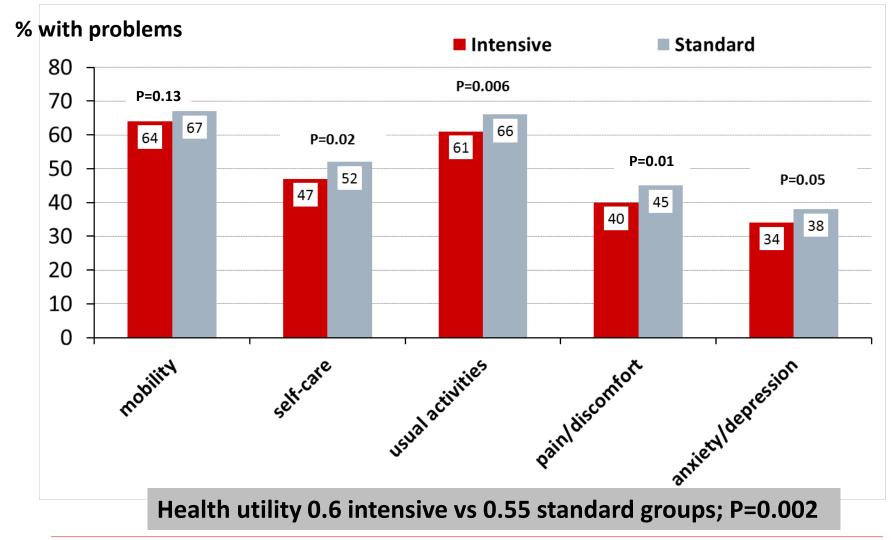
- Primary outcome mRS 0-2 (Alive and well) vs 3-6 (Dead or disabled)
- Key secondary outcome- ordinal shift, logistic regression, mRS
- □ <u>A number of pre-specified Subgroups</u>


Systolic BP control

Median (iqr) time to treatment, hr - intensive 4 (3-5), standard 5 (3-7)


Primary clinical outcome Death or major disability (mRS 3-6) at 90 days

Key 2ry outcome: Global functional recovery Ordinal shift in mRS scores (0-6)


Odds ratio 0.87 (95%CI 0.77 to 1.00); P=0.04

Health-related quality of life

EuroQol EQ-5D domains 'any problems' versus 'no problems'

Pre-specified subgroups	Number of	events (%)	Odds Ratio		
and primary endpoint	Intensive	Standard	(95%CI)	Odds Ratio (95%CI)	P homog
Age					
<65 years	340 (43.3)	352 (46.7)	- + -+	0.87 (0.71 to 1.06)	0.76
≥65 years	379 (63.6)	433 (65.7)		0.91 (0.72 to 1.15)	
Region					
Chinese	431 (45.8)	480 (49.6)		0.86 (0.72 to 1.03)	0.97
Others	288 (65.5)	305 (68.7)		0.86 (0.65 to 1.14)	
Time to randomisation					
<4 hours	435 (54.3)	465 (56.7)		0.91 (0.75 to 1.10)	0.48
≥4 hours	284 (48.9)	320 (54.1)		0.81 (0.65 to 1.02)	
Baseline systolic BP					
<180 mmHg	372 (50.0)	400 (53.8)		0.86 (0.70 to 1.05)	0.90
≥180 mmHg	347 (54.4)	385 (57.6)	-+	0.88 (0.70 to 1.09)	
History of hypertension					
Yes	524 (52.5)	555 (54.3)		0.93 (0.78 to 1.11)	0.12
No	194 (50.7)	228 (58.9)		0.72 (0.54 to 0.95)	
Baseline NIHSS score					
<15	393 (39.8)	440 (44.3)	B !	0.83 (0.70 to 0.99)	0.48
≥15	324 (82.9)	341 (83.4)		0.96 (0.67 to 1.40)	
Baseline haematoma vol	ume				
<15 ml	285 (39.3)	309 (42.0)	;∎-;-	0.90 (0.73 to 1.10)	0.57
≥15 ml	383 (69.1)	416 (73.4)	── ∎¦ }	0.81 (0.63 to 1.05)	
Baseline haematoma loc	ation				
Deep	568 (53.1)	614 (56.9)	-#-	0.86 (0.73 to 1.02)	0.76
Others	100 (47.6)	111 (49.8)		0.92 (0.63 to 1.34)	
Total	719 (52.0)	785 (55.6) 0.	5 Intensive 1.0 Guide	0.87 (0.75 to 1.01)	
			Better Bett		

Other pre-specified clinical and safety outcomes

Parameter	Intensive (N=1399)	Standard (N=1430)	Р
Clinical	(10 1000)	(11 2 100)	
Cinnear			
Hospital stay, median (iqr)	20 (12-35)	19 (11-33)	0.43
Institutional care at 90 days	9%	9%	0.80
Poor outcome at 28 days	66%	68%	0.22
Safety			
Neurological deterioration in 24 hr	66%	68%	0.22
Deaths from initial ICH	7%	8%	0.67
Non-fatal SAEs	23%	24%	0.92
Severe hypotension	0.5%	0.6%	0.83

Other pre-specified clinical and safety outcomes

Demonster	Intensive	Standard	D
Parameter	(N=1399)	(N=1430)	Р
Clinical			
Hospital stay, median (iqr)	20 (12-35)	19 (11-33)	0.43
Institutional care at 90 days	9%	9%	0.80
Poor outcome at 28 days	66%	68%	0.22
Safety			
Neurological deterioration in 24 hr	66%	68%	0.22
Deaths from initial ICH	7%	8%	0.67
Non-fatal SAEs	23%	24%	0.92
Severe hypotension	0.5%	0.6%	0.83

INTERACT1 and 2 CT substudies Effects of BP lowering on hematoma growth

	Absolute growth		Favors	Favors		Difference	
	Intensive Guideline		intensive	guio	deline	(95% CI)	P homog
Crude							
INTERACT1	0.9ml	2.7ml		_		1.7ml (-0.5 to 4.0) 0.99
INTERACT2	3.1ml	4.9ml		_		1.8ml (-0.3 to 3.8	3)
OVERALL	2.5ml	4.3ml	\bigcirc			1.8ml (0.1 to 3.4))
Adjusted*							
INTERACT1	1.5ml	3.3ml				1.8ml (-0.4 to 4.0) 0.96
INTERACT2	2.9ml	4.6ml		_		1.8ml (-0.3 to 3.8	3)
OVERALL	1.9ml	3.7ml	\bigcirc			1.8ml (0.2 to 3.4))
		[Т	
		5	()		-5	
	Difference in absolute growth (ml)						

*Adjusted for baseline volume and location of hematoma, time from onset to CT and trial.

Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

J. Claude Hemphill III, Steven M. Greenberg, Craig S. Anderson, Kyra Becker, Bernard R. Bendok, Mary Cushman, Gordon L. Fung, Joshua N. Goldstein, R. Loch Macdonald, Pamela H. Mitchell, Phillip A. Scott, Magdy H. Selim and Daniel Woo

Stroke. published online May 28, 2015;

The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists.

Endorsed by the American Association of Neurological Surgeons, the Congress of Neurological Surgeons, and the Neurocritical Care Society

This guideline was approved by the American Heart Association Science Advisory and Coordinating Committee on January 28, 2015, and the American Heart Association Executive Committee on February 16, 2015. A copy of the document is available at http://my.americanheart.org/statements by selecting

Recommendations for the control of blood pressure in ICH patients

- 1. For ICH patients presenting with SBP between 150 and 220 mmHg and without contraindication to acute BP treatment, acute lowering of SBP to 140 mmHg is safe (*Class I; Level of Evidence A*) and can be effective for improving functional outcome (*Class Ha; Level of Evidence B*). (Revised from the previous guideline)
- 2. For ICH patients presenting with SBP >220 mmHg, it may be reasonable to consider aggressive reduction of BP with a continuous intravenous infusion and frequent BP monitoring (*Class IIb; Level of Evidence C*). (New recommendation)

Major findings of INTERACT2

- BP lowering in acute ICH to target 140mmHg:
- Effective! Less disability, better functional outcome & health related QoL
- Safe! No increase in death or adverse events
- Consistent effect across patient/disease characteristics
- Effects on haematoma growth time dependent

Major findings of INTERACT2

- BP lowering in acute ICH to target 140mmHg:
- Effective! Less disability, better functional outcome & health related QoL
- Safe! No increase in death or adverse events
- Consistent effect across patient/disease characteristics
- Effects on haematoma growth time dependent

□ BP lowering most effective when: ▷ Early ▷ Fast ▷ Sustained

\Rightarrow Should be considered for all ICH patients

Presented at European Stroke Organisation Conference Barcelona, 10th May 2016 And NEJM ePub ahead of print

For the ENCHANTED Investigators and coordinators

Other funding support

the Stroke Association of the United Kingdom

the National Council for Scientific and Technological Development of Brazil

the Ministry for Health, Welfare and Family Affairs of the Republic of Korea PRIMARY AIMS: to answer reliably 4 major research questions in acute ischaemic stroke

- Compared to standard-dose (0.9 mg/kg) rtPA, is low-dose (0.6 mg/kg) i.v. rtPA :
 - 1. *'non-inferior'* clinical outcome (mRS 2-6) at 90-days
 - 2. safer lower risk of *major* sICH?
- Compared to guideline recommended BP control (<185 mmHg systolic target before initiation of rtPA), is rapid intensive BP lowering (130-140 mmHg SBP target):
 - 3. *superior* clinical outcomes (mRS 2-6) at 90-days
 - 4. safer lower risk of any ICH

PRIMARY AIMS: to answer reliably 4 major research questions in acute ischaemic stroke

- Compared to standard-dose (0.9 mg/kg) rtPA, is low-dose (0.6 mg/kg) i.v. rtPA:
 - 1. *'non-inferior'* clinical outcome (mRS 2-6) at 90-days
 - 2. safer lower risk of *major* sICH?

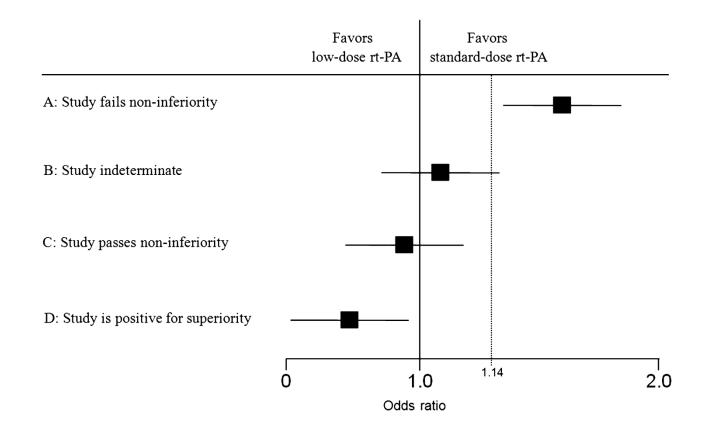
BP arm continuing,

(1150 patients recruited to date; (Completion expected 2018-with presentation in 2019)

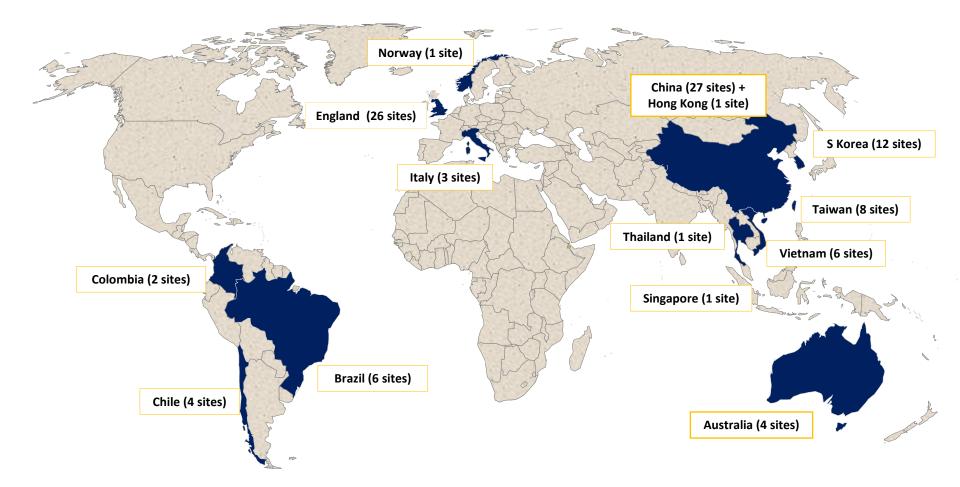
Background and rationale for dose arm

- Standard dose (0.9mg/kg) approved after NIH stroke trial vs placebo
- Dose Of 0.9mg/kg derived from preliminary, nonrandomised, dose escalation studies in only 74 patients
- Regulatory approved dose pof 0.6mh/kg approved in Japan, on basis of number of small registry studies
- Variable dose of rtPA used in Asia due to affordability and ICI risk perception

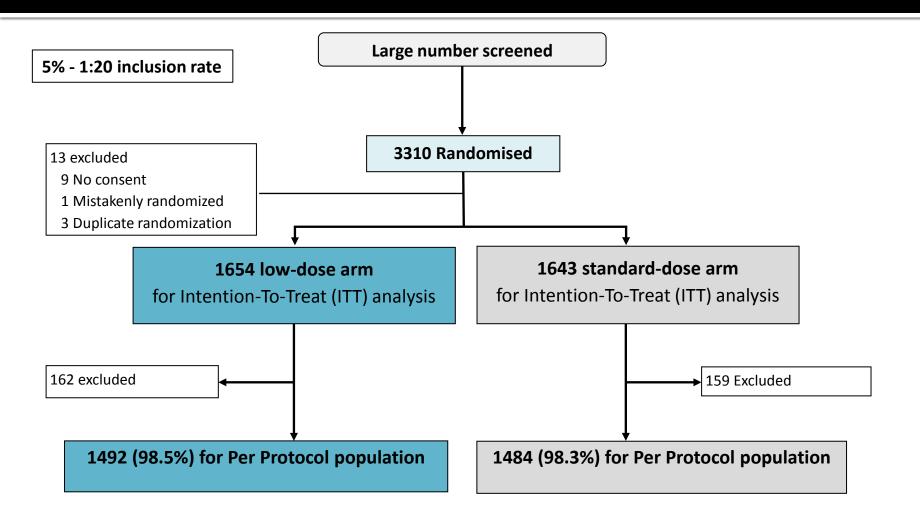
Background and rationale


- Standard dose (0.9mg/kg) approved after NIH stroke trial vs placebo
- Dose Of 0.9mg/kg derived from preliminary, nonrandomised, dose escalation studies in only 74 patients
- Regulatory approved dose pof 0.6mh/kg approved in Japan, on basis of number of small registry studies
- Variable dose of rtPA used in Asia due to affordability and ICI risk perception
- □ **No strong basis for choice of dose**

Study plan for dosage arm Protocol & Analysis plan both published in Int J Stroke


- □ Patients: Acute ischaemic stroke, confirmed by CT/MRI, Randomised within 4.5 hours, SBP ≤185mmH
- □ **PROBE design** analysis by ITT
- Primary outcome mRS 0-1 (Alive and well) vs 2-6 (Dead or disabled) – analysed by non-inferiority
- □ Key safety outcome (ICH by SITS-MOST)
- Key secondary outcome- ordinal shift, logistic regression, mRS
- Pre-specified Subgroups

Statistical analysis approach for non-inferiority (NB: ITT)


Sample size of N=3300 (1650 per group): estimated to provide >90% power (1-sided α 0.025) to achieve the noninferiority setting, assuming 5% drop-out with the ability to also assess for superiority of low- versus standard-dose r-tPA; and >80% power (2-sided α 0.05) to detect >40% relative reductions in sICH for the low-dose r-tPA group, with 5% of drop-out.

ENCHANTED – network (13 countries worldwide)

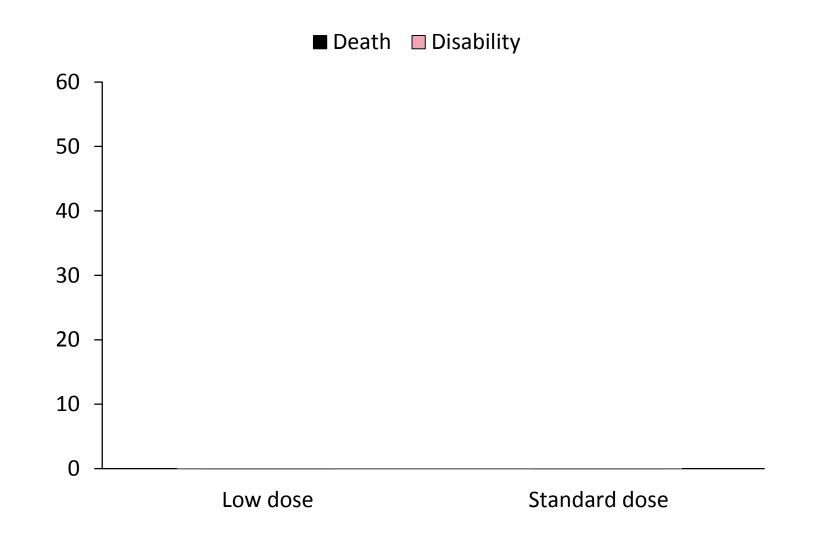
Patient Flow

Results

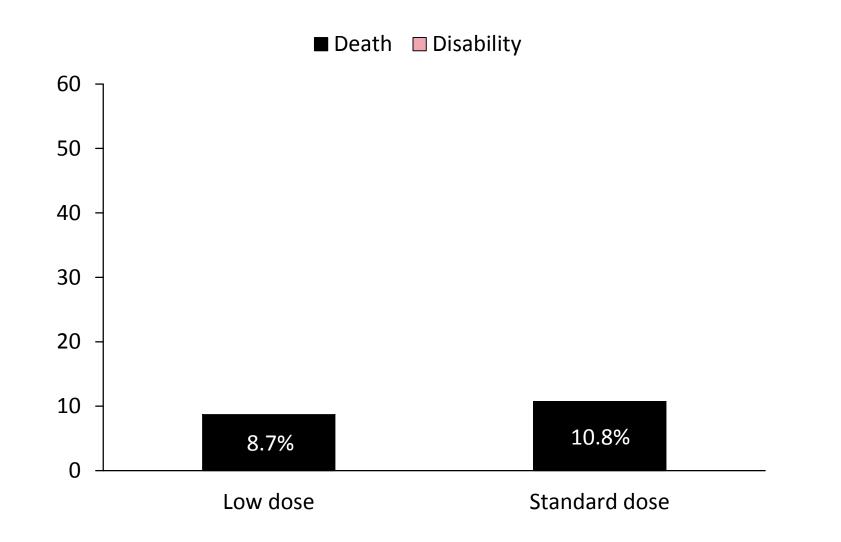
Baseline - Demographic and clinical

Variable	Low-dose N=1654	Standard dose N=1643
Age median (iqr)	68 (58-76)	67 (58-76)
Female	38%	37%
China (origin)	43%	43%
Asian (ethnicity)	63%	63%
History of hypertension	63%	63%
Blood pressure (mmHg)	149/84	150/85
NIHSS median (iqr) score	8 (5-14)	8 (5-14)
GCS median (iqr) score	15 (14–15)	15 (14–15)
Aspirin / Other APT	25%	21%
Large artery occlusion	38%	40%
Cardio-embolism	20%	20%
Small vessel on Lacunar disease	20%	21% ⁴⁹

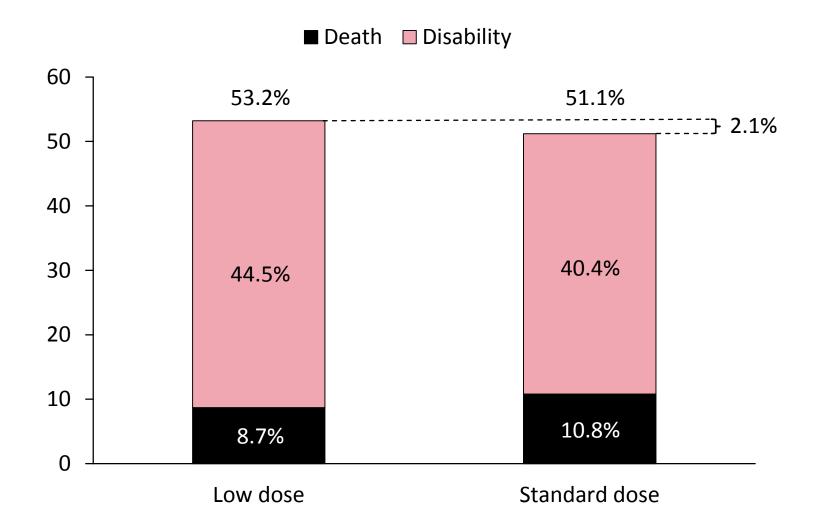
Baseline - Demographic and clinical


Variable	Low-dose N=1654	Standard dose N=1643
Age median (iqr)	68 (58-76)	67 (58-76)
Female	38%	37%
China (origin)	43%	43%
Asian (ethnicity)	63%	63%
History of hypertension	63%	63%
Blood pressure (mmHg)	149/84	150/85
NIHSS median (iqr) score	8 (5-14)	8 (5-14)
GCS median (iqr) score	15 (14–15)	15 (14–15)
Aspirin / Other APT	25%	21%
Large artery occlusion	38%	40%
Cardio-embolism	20%	20%
Small vessel on Lacunar disease	20%	21% ⁵⁰

Randomised treatment Timing and dose of rtPA


Variable	Low-dose (N=1654)	Standard-dose (N=1643)
Time from onset to treatment – mins		
Median	170	170
Interquartile range	125-218	127-219
Estimated body weight prior to rtPA	70±14	70±14
Measured body weight after rtPA	1495 (90%)	1475 (90%)
Direct measured body weight after rtPA	69±15	69±14
rtPA given to patients - n (%)	1628 (98%)	1617 (98%)
Bolus infusion dose - mg	6.2±1.2	6.3±2.1*
Maintenance infusion dose - mg	35.5±7.3	56.0±11.3**

*P=0.05 and **P<0.001


Primary clinical outcome Death or disability (mRS 2-6) at 90 days

Primary clinical outcome Death or disability (mRS 2-6) at 90 days

Primary clinical outcome Death or disability (mRS 2-6) at 90 days

Key secondary outcome Ordinal shift in mRS scores (0-6)

Odds ratio 0.99 (95%CI 0.88 to 1.13); P=0.032 for noninferiority

		□0	□1	□2	∎3	■ 4	•	5 ■6			
Low dose	25.	1		21.6		15.6		13.1	10.3	5.5	8.7
Low dose alteplase vs. standard dose alteplase net difference per 1000 patients treated	+2			-25		+15		+18	+7	0	-19
Standard dose	24.	9		24.1		14.:	L	11.3	9.6	5.5	10.6
	0 10	20	30	40		50	60	70	80	9) 100

Percentage of mRS scores

Primary clinical outcome – various analyses Death or disability (mRS 2-6) at 90 days

	Favors	Favors		P value for
Analysis	low-dose alteplase	standard-dose alteplase	Odds Ratio (95% Cl)	Noninferiority
ITT population - unadjusted	-		1.09 (0.95 - 1.25)	0.511
ITT population - adjusted*	-		1.13 (0.97 - 1.31)	0.876
ITT population shift analysis of mRS - adjust	ed* —		0.99 (0.88 - 1.13)	0.032
PP population - adjusted*	-		1.13 (0.96 - 1.32)	0.885
PP population shift analysis of mRS - adjuste			1.00 (0.88 - 1.14)	0.048
0	.5 1.	.0 ^{1.14} 2.0		
	Odds	Ratio		

Symptomatic intracerebral hemorrhage Various standard criteria

	Low dose S alteplase	Standard dose alteplase	Favors Low-dose	Favors Standard-dose	Odds F	Ratio (95% Cl)	P value
SITS-MOST criteria	17 (1.0%)	35 (2.1%)			0.48	(0.27 - 0.86)	0.01
NINDS criteria	98 (5.9%)	131 (8.0%)	-#-		0.73	(0.55 - 0.95)	0.02
ECASS2 criteria	55 (3.3%)	87 (5.3%)			0.62	(0.44 - 0.87)	<.01
ECASS3 criteria	20 (1.2%)	42 (2.6%)	-		0.47	(0.27 - 0.80)	<.01
IST-3 criteria	33 (2.0%)	51 (3.1%)			0.64	(0.41 - 0.99)	0.05
Fatal (≤7days)	9 (0.5%)	24 (1.5%) —	•		0.37	(0.17 - 0.80)	0.01
Adjudicated any ICH	277 (16.7%)	294 (17.9%)	-	-	0.92	(0.77 - 1.11)	0.38
		0.2	1	.0	6.0		
			Odds	Ratio			

Baseline Subgroups

1ry Outcome: death or disability

	Low dose Standard dose alteplase alteplase	Favors Favo Low-dose Stan	ors dard-dose	Odds F	Ratio (95% CI)	P value for Interaction	
Age				Cuusi			
< 65 years	302 (43.9%) 301 (44.3%)			0.98	(0.79 - 1.22)	0.198	
\geq 65 years	553 (60.2%) 516 (56.1%)		⊢	1.18	(0.98 - 1.42)		
Ethnicity							
Asian	527 (51.5%) 500 (49.0%)	╶┼═	_	1.10	(0.93 - 1.31)	0.825	
Non-Asian	328 (56.4%) 317 (54.7%)			1.07	(0.85 - 1.35)		
Time to randomization							
< 3 hours	536 (54.5%) 497 (51.8%)	╼┼		1.12	(0.93 - 1.34)	0.634	
\geq 3 hours	319 (51.1%) 320 (50.1%)	_ _	_	1.04	(0.84 - 1.30)		
Baseline NIHSS score							
≤8	282 (34.9%) 282 (34.6%)		-	1.01	(0.83 - 1.24)	0.313	
> 8	573 (71.8%) 535 (68.3%)		┣──	1.18	(0.95 - 1.46)		
Antiplatelet agent use							
Yes	222 (56.3%) 204 (60.7%)			0.84	(0.62 - 1.12)	0.052	
No	632 (52.3%) 612 (48.5%)	┝─■	┣─	1.16	(0.99 - 1.36)		
	0.5	1.0	:	2.0			58
		Odds Ratio)				

Other secondary outcomes

Outcome	<mark>Low-dose</mark> (N=1654)	Standard-dose (N=1643)	Odds Ratio	Ρ
Death/dependency: mRS 3-6	605 (38%)	592 (37%)	1.03	0.15
Death at 90 days	140 (9%)	170 (10%)	0.80	0.07
Health utility - EQ-5D	0.6±0.4	0.6±0.4	0.00	0.86
Living at home	1363 (90%)	1306 (89%)	1.18	0.16
Hospital stay, median (iqr), days	10 (5-17)	10 (5-18)	-0.47	0.53
Death/neuro decline in 24 hr	128 (8%)	141 (9%)	0.89	0.38
Death/neuro decline 7 days	188 (11%)	213(13%)	0.86	0.16
SAE	415 (25%)	448(27%)	0.89	0.16

Other secondary outcomes

Outcome	<mark>Low-dose</mark> (N=1654)	Standard-dose (N=1643)	Odds Ratio	Ρ
Death/dependency: mRS 3-6	605 (38%)	592 (37%)	1.03	0.15
Death at 90 days	140 (9%)	170 (10%)	0.80	0.07
Health utility - EQ-5D	0.6±0.4	0.6±0.4	0.00	0.86
Living at home	1363 (90%)	1306 (89%)	1.18	0.16
Hospital stay, median (iqr), days	10 (5-17)	10 (5-18)	-0.47	0.53
Death/neuro decline in 24 hr	128 (8%)	141 (9%)	0.89	0.38
Death/neuro decline 7 days	188 (11%)	213(13%)	0.86	0.16
SAEs	415 (25%)	448(27%)	0.89	0.16

Summary of findings

Major findings of ENCHANTED

In thrombolysis-eligible patients with acute ischemic stroke, lower dose (0.6mg/kg) dose rtPA :


- Did not meet non-inferiority criteria compared to standard-dose (0.9 mg/kg) for primary outcome
- Did meet non-inferiority criteria compared to standard-dose for global functional outcome (shift on mRS)
- caused fewer deaths, less ICH, and less fatal ICH
- comparable EQ-5D and other clinical measures
- consistency of findings in all pre-specified sub-groups

Implications for Clinicians

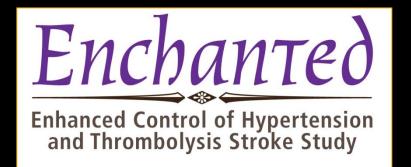
In thrombolysis-eligible patients with acute ischemic stroke, low-dose rtPA :

- **Is safer,** with less symptomatic or fatal ICH, and less deaths
- Is non-inferior (ie equally effective) for global functional recovery (shift), both ITT and PP
- Is especially safer in patients on aspirin or APT


It should be **considered for all patients** with acute ischaemic stroke who are thought to be **at high risk of ICH**, regardless of age and ethnicity, particularly those on anti-platelet treatment.

DOSAGE ARM Presented at European Stroke Organisation Conference Barcelona, 10th May 2016 And NEJM ePub ahead of print

For the ENCHANTED Investigators and coordinators



Other funding support

the Stroke Association of the United Kingdom

the National Council for Scientific and Technological Development of Brazil

the Ministry for Health, Welfare and Family Affairs of the Republic of Korea

BP ARM NOW MAIN FOCUS: Stepping up recruitment, with support from new NHMRC Project Grant. Results in 2019—Major issue for all clinicians: Only ongoing BP trial in acute ischaemic stroke

For the ENCHANTED Investigators and coordinators

Other funding support

the Stroke Association of the United Kingdom

the National Council for Scientific and Technological Development of Brazil

the Ministry for Health, Welfare and Family Affairs of the Republic of Korea

<u>Triple therapy prevention of Recurrent Intracerebral Disease EveNts Trial</u> (TRIDENT)

> Multicentre, international, **double-blind**, **placebo-controlled**, randomised trial to determine the effect of intensive BP control using a **fixed low-dose (half standard dose)**, **combination blood** pressure lowering pill **("Triple Pill")** strategy on top of standard of care, for preventing recurrent stroke in **4300 patients with a history of intracerebral haemorrhage**, **followed up for 3 years**.

Funded by an NHMRC Project grant, 2016-20

BLOOD PRESSURE & STROKE Take home message

- Blood pressure & stroke v closely associated
- Benefits of BP lowering established for both 1ry and 2ry prevention
- Little evidence of J-shape for 1ry or 2ry prevention
- More doubts re BP Lowering for acute stroke
- Safety of BP lowering to 140mmHg established for acute ICH (INTERACT2)
- Balance of risks/benefits for ischaemic stroke still an open question (await ENCHANTED)
- Great caution in frail elderly subjects

BLOOD PRESSURE & STROKE Target blood pressure – A personal view

- Target BP of <140/90 for 1ry prevent in low risk adults <80years
- Target of <130/80 for 2ry stroke prevention and for 1ry prevention in fit, high risk adults <80 yr (NB SPRINT trial)
- Target BP of <150/80 mmHg for 1ry prevention in fit elderly over 80 years (HYVET trial)
- Target SBP of <140mmHg safe for acute ICH
- Target SBP not yet clear for acute ischaemic stroke (await ENCHANTED BP arm)
- More caution in frail elderly in all situations!

STROKE and BLOOD PRESSURE: PREVENTION AND TREATMENT

Cottrell Memorial Lecture RACP annual Scientific Meeting Adelaide, May , 2016

John Chalmers The George Institute for Global Health The University of Sydney