

RACP Congress 2017

Genetics of Intellectual Disability and Autism: Past

Present and Future

9th May 2017

Why causation?

- Explanation for family
- Prognosis
- Recurrence risk and reproductive options
- Guide medical management
- Avoid unnecessary investigations
- Promise of new targeted treatments
- Support groups and international community
- Prevention

Goal: to identify a precise cause of all children with genetically determined neurodisability

Find new genetic causes

- Prevention
- Novel
 - treatments
- Improved clinical care

MELBOURNE

Murdoch Children Research

Intellectual Disability

- Normal (IQ >70)
- Mild ID (IQ 50-70)
 - 1-3%
 - Behaves genetically as the lower end of the normal distribution
 - Polygenic factors plus environment
 - Many do not have a single identifiable cause

Moderate-Severe ID (IQ <50)

- 0.3-0.5%
- Parental intelligence usually normal
- Discontinuity between intelligence of affected and unaffected family members
- More common in males than females
- Identifiable genetic cause in >50%

1959 identification of aneuploidy

Karyotype

- Yield is 4%
- Common abnormalities incl.
 - Trisomy 21
 - Sex chromosome aneuploidy
 - Small deletions/duplications
- Yield increased if additional features:
 - Dysmorphic features
 - Growth retardation
 - Organ defects

Strates -	direction to	1100000	SCHOOL ST	ł	98	Access Repo
	teons.	1000	- BAR			
64	-	6.0	83	22	a c	મ
28	38		6 6		3	8

Del 5p: Cri du chat syndrome

1990s - Targeted FISH, microdeletion syndromes

1990s – Multiple microdeletion syndromes

2010

The Reyel Children's Heaptin Malbourse

MELBOURNE

Murdoch Childrens Research Institute

Children's

Era of genomic medicine

- Genomic medicine: an emerging practice of medicine that involves using genomic data to better predict, diagnose, and treat disease
- New technologies continue to drive advances in genomic medicine in last 10 years and the future

Molecular karyotyping using microarray based testing

- Has replaced conventional karyotyping for paediatric indications
- Whole genome copy number analysis
- Detects pathogenic CNVs in 15% of undiagnosed ID
- Many inherited CNVs associated with learning problems, behaviour
- Many new syndromes defined
- Does not detect Fragile X syndrome

ORIGINAL ARTICLE

Pathogenic aberrations revealed exclusively by single nucleotide polymorphism (SNP) genotyping data in 5000 samples tested by molecular karyotyping

D L Bruno,^{1,2} S M White,^{1,2} D Ganesamoorthy,^{1,2} T Burgess,¹ K Butler,¹ S Corrie,¹ D Francis,¹ L Hills,¹ K Prabhakara,¹ C Ngo,¹ F Norris,¹ R Oertel,¹ M D Pertile,^{1,2} Z Stark,¹ D J Amor,^{1,2} H R Slater^{1,2}

1. Pathogenic Copy Number Changes

- These are well established 'pathogenic' copy number change
- Already described and verified in the literature
- Include common microdeletion and microduplication syndromes, e.g.
 - Prader-Willi syndrome
 - Angelman syndrome
 - 22q11 microdeletion syndrome (VCFS)
 - Cri-du-chat syndrome

2. Copy number changes with incomplete penetrance

- Known association with phenotypic abnormality
- But also be found in phenotypically normal parents/healthy controls.
- Therefore likely to be a contributing factor but not in itself sufficient to cause the abnormality

- 16p11.2 deletion
 - IQ low normal/ mild ID

- Language difficulties
- Overweight

16p11.2 duplication

- Found in normal individuals
- Increased risk of in dev delay and psychiatric disorders

• 15q11.2 deletion

- Found in normal individuals
- Penetrance estimate 10% for neurodevelopmental disorders

Table 1 Penetrance estimates with case and control frequencies for recurrent CNVs

Region (gene within region)	Copy number	Coordinates (hg18)	Frequency, postnatal aCGH cases	Frequency, controls	P value (Fisher exact one-tailed test)	Frequency of <i>de novo</i> occurrence in cases	Penetrance estimate, % (95% Cl)
Proximal 1q21.1 (<i>RBM8A</i>)	Duplication	chr1: 144.0–144.5 Mb	85/48,637 (0.17%)	10/22,246 (0.04%)	<<0.0001	0/13 (0%)	17.3 (10.8–27.4)
Distal 1q21.1 (<i>GJA5</i>)	Deletion	chr1: 145.0–146.35 Mb	97/33,226 (0.29%)	6/22,246 (0.03%)	<<0.0001	7/39 (17.9%)	36.9 (23.0–55.0)
Distal 1q21.1 (<i>GJA5</i>)	Duplication	chr1: 145.0–146.35 Mb	68/33,226 (0.20%)	6/22,246 (0.03%)	<<0.0001	5/30 (16.7%)	29.1 (16.9–46.8)
15q11.2 (<i>NIPA1</i>)	Deletion	chr15: 20.3–20.8 Mb	203/25,113 (0.81%)	84/22,246 (0.38%)	<<0.0001	0/27 (0%)	10.4 (8.45–12.7)
16p13.11 (<i>MYH11</i>)	Deletion	chr16: 14.9–16.4 Mb	50/33,226 (0.15%)	12/22,246 (0.05%)	<0.0005	5/23 (21.7%)	13.1 (7.91–21.3)
16p12.1 (<i>CDR2</i>)	Deletion	chr16: 21.85–22.4 Mb	62/33,226 (0.19%)	16/22,246 (0.07%)	<0.0002	1/28 (3.6%)	12.3 (7.91–18.8)
Distal 16p11.2 (<i>SH2B1</i>)	Deletion	chr16: 28.65–29.0 Mb	46/33,226 (0.14%)	1/22,246 (0.005%)	<<0.0001	7/21 (33.3%)	62.4 (26.8–94.4)
Distal 16p11.2 (<i>SH2B1</i>)	Duplication	chr16: 28.65–29.0 Mb	35/33,226 (0.11%)	10/22,246 (0.04%)	<0.01	1/8 (12.5%)	11.2 (6.26–19.8)
Proximal 16p11.2 (<i>TBX6</i>)	Deletion	chr16: 29.5–30.15 Mb	146/33,226 (0.44%)	6/22,246 (0.03%)	<<0.0001	33/47 (70.2%)ª	46.8 (31.5–64.2)
Proximal 16p11.2 (<i>TBX6</i>)	Duplication	chr16: 29.5–30.15 Mb	93/33,226 (0.28%)	9/22,246 (0.04%)	<<0.0001	7/30 (23.3%)	27.2 (17.4–40.7)
17q12 (<i>HNF1B</i>)	Deletion	chr17: 31.8–33.3 Mb	29/33,226 (0.09%)	2/22,246 (0.01%)	<0.0001	5/9 (55.6%)	34.4 (13.7–70.0)
17q12 (<i>HNF1B</i>)	Duplication	chr17: 31.8–33.3 Mb	37/33,226 (0.11%)	5/22,246 (0.02%)	<0.0001	2/9 (22.2%)	21.1 (10.6–39.5)
22q11.21 (<i>TBX1</i>)	Duplication	chr22: 17.2–19.9 Mb	136/48,637 (0.28%)	12/22,246 (0.05%)	<<0.0001	12/47 (25.5%)	21.9 (14.7–31.8)

aCGH, microarray-based comparative genomic hybridization; CI, confidence interval; CNV, copy-number variation; <<, much less than.

^aDeletions of the proximal 16p11.2 region showed a maternal transmission bias (14/68 mothers identified to be carriers vs. 0/38 fathers; two-tailed *P* = 0.0018, Fisher exact test); no parental transmission bias was detected for any other CNV.

GENETICS in MEDICINE | Volume 15 | Number 6 | June 2013

Concept of penetrance may not be appropriate for CNVs

Melbourne Children's The Angred Challenger

MELBOURNE

Murdoch Childrens Research Institute

Controls carrying neuropsychiatric CNVs have lower cognitive scores than population controls

Stefansson et al. Nature 2014

THE UNIVELITY OF

Original Investigation

Copy Number Variations and Cognitive Phenotypes in Unselected Populations

Katrin Männik, PhD; Reedik Mägi, PhD; Aurélien Macé, MSc; Ben Cole, BS; Anna L. Guyatt, MBChB; Hashem A. Shihab, PhD; Anne M. Maillard, PhD; Helene Alavere, MD, MSc; Anneli Kolk, MD, PhD; Anu Reigo, MD; Evelin Mihailov, MSc; Liis Leitsalu, MSc; Anne-Maud Ferreira, MSc; Margit Nõukas, MSc; Alexander Teumer, PhD; Erika Salvi, PhD; Daniele Cusi, PhD; Matt McGue, PhD; William G. Iacono, PhD; Tom R. Gaunt, PhD; Jacques S. Beckmann, PhD; Sébastien Jacquemont, MD; Zoltán Kutalik, PhD; Nathan Pankratz, PhD; Nicholas Timpson, PhD; Andres Metspalu, MD, PhD; Alexandre Reymond, PhD

Table 2. Educational Attainment in Estonian Genome Center, the University of Tartu Cohort (Joint Analysis of Discovery and Replication Cohorts)^a

Cohort	Sample Size	Mean Education Attainment (95% CI) ^b	P Value ^c	No. of Individuals Not Reaching Secondary Education	Prevalence, %	No. of Individuals Not Reaching Secondary Education, OR (95% CI)	<i>P</i> Value ^c
Estonian population	7877	4.08 (4.10-4.05)		2000	25.4		
DECIPHER-listed CNV carriers	56	3.64 (3.92-3.37)	3.0e-03	28	50	2.94 (1.67-5.16)	8.334e-05
Deletion carrier by CNV size							
≥1 Mb	37	3.51 (3.80-3.22)	4.0e-04	17	46	2.5 (1.23-5.03)	7.2e-03
≥500 kb	84	3.75 (3.98-3.52)	5.7e-03	33	39.3	1.9 (1.18-3.01)	5.4e-03
≥250 kb	248	3.81 (3.94-3.67)	1.06-e04	83	33.5	1.48 (1.12-1.95)	5.0e-03
500 kb ≤ to <1 Mb	47	3.93 (4.28-3.59)	3.83e-01	16	34.0	1.52 (0.77-2.87)	1.8e-01
250 kb≤ to <500 kb	164	3.84 (4.00-3.67)	4.1e-03	50	30.5	1.29 (0.9-1.82)	1.5e-01
Duplication carrier by CNV size							
≥1 Mb	115	3.69 (3.87-3.51)	5.024e-05	45	39.1	1.89 (1.27-2.8)	1.6e-03
≥500 kb	264	3.92 (4.05-3.79)	2.5e-02	86	32.6	1.42 (1.08-1.86)	1.0e-02
≥250 kb	583	4.04 (4.13-3.95)	4.93e-01	164	28.1	1.15 (0.95-1.39)	1.54e-01
$500 \text{ kb} \le \text{to} < 1 \text{ Mb}$	149	4.10 (4.29-3.93)	8.19e-01	43	28.9	1.19 (0.81-1.72)	3.4e-01
250 kb≤ to <500 kb	319	4.14 (4.27-4.02)	2.95e-01	78	24.5	0.95 (0.72-1.24)	7.4e-01

Abbreviations: CNV, copy number variations; EGCUT, Estonian Genome Center, the University of Tartu; kb, kilobase; OR, odds ratio.

primary, 1; primary, 2; basic, 3; secondary, 4; professional or college, 5; university or academic, 6; scientific degree, 7.

^a The results are presented as cumulative or as size-separated groups.

^c Statistical significance was determined by comparing the educational

JAMA 2015

3. Copy number changes of unknown significance

- These are changes that have not been described and verified in the literature, but which contain genes, therefore potentially relevant.
- Standardised workflow to determine pathogenicity:
 - Size of CNV
 - Inherited vs. de novo
 - If inherited, does it track with phenotype in family?
 - Gene content
 - Information from databases
 - Healthy control
 - Developmental disability

Cost of sequencing a genome

Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study

Anita Rauch*, Dagmar Wieczorek*, Elisabeth Graf*, Thomas Wieland*, Sabine Endele, Thomas Schwarzmayr, Beate Albrecht, Deborah Bartholdi, Jasmin Beygo, Nataliya Di Donato, Andreas Dufke, Kirsten Cremer, Maja Hempel, Denise Horn, Juliane Hoyer, Pascal Joset, Albrecht Röpke, Ute Moog, Angelika Riess, Christian T Thiel, Andreas Tzschach, Antje Wiesener, Eva Wohlleber, Christiane Zweier, Arif B Ekici, Alexander M Zink, Andreas Rump, Christa Meisinger, Harald Grallert, Heinrich Sticht, Annette Schenck, Hartmut Engels, Gudrun Rappold, Evelin Schröck, Peter Wieacker, Olaf Riess, Thomas Meitinger, André Reis†, Tim M Strom†

- 45/51 (88%) of ID patients had de novo variants (1.71/generation)
- 16/51 (31%) of ID patients had de novo mutations in known ID genes
- Plus 6/51 (12%) of ID patients had de novo mutations in novel genes predicted to be disease causing
- <u>= total yield 43%</u>
- 14/20 (70% of controls had de novo variants (1.2/generation)
- Little role for autosomal recessive genes

Lancet 2012; 380: 1674–82

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability

Joep de Ligt, M.Sc., Marjolein H. Willemsen, M.D., Bregje W.M. van Bon, M.D., Ph.D.,
Tjitske Kleefstra, M.D., Ph.D., Helger G. Yntema, Ph.D., Thessa Kroes, B.Sc.,
Anneke T. Vulto-van Silfhout, M.D., David A. Koolen, M.D., Ph.D.,
Petra de Vries, B.Sc., Christian Gilissen, Ph.D., Marisol del Rosario, B.Sc.,
Alexander Hoischen, Ph.D., Hans Scheffer, Ph.D., Bert B.A. de Vries, M.D., Ph.D.,
Han G. Brunner, M.D., Ph.D., Joris A. Veltman, Ph.D.,
and Lisenka E.L.M. Vissers, Ph.D.

- 100 patients with IQ <50 and parents
- 53/100 patients (53%) had one or more de novo mutations
- 13/100 (13%) of patients had mutations in known autosomal or Xlinked genes
- Additional 22/100 (22%) patients had mutations in candidate ID genes
- <u>= total yield 35%</u>
- No causative autosomal recessive gene mutations detected

2013

Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data

Caroline F Wright, Tomas W Fitzgerald, Wendy D Jones, Stephen Clayton, Jeremy F McRae, Margriet van Kogelenberg, Daniel A King, Kirsty Ambridge, Daniel M Barrett, Tanya Bayzetinova, A Paul Bevan, Eugene Bragin, Eleni A Chatzimichali, Susan Gribble, Philip Jones, Netravathi Krishnappa, Laura E Mason, Ray Miller, Katherine I Morley, Vijaya Parthiban, Elena Prigmore, Diana Rajan, Alejandro Sifrim, GJawahar Swaminathan, Adrian R Tivey, Anna Middleton, Michael Parker, Nigel P Carter, Jeffrey C Barrett, Matthew E Hurles, David R FitzPatrick, Helen V Firth, on behalf of the DDD study⁺

- 1133 children
- UK and Ireland
- 87% ID/DD
- Exome sequencing <u>trios</u> and arrayCGH
- Mean per child
 - SNVs 19,811
 - Indels 491
 - CNVs 148
 - De novo variant 1.2

Large-scale discovery of novel genetic causes of developmental disorders 2015

The Deciphering Developmental Disorders Study*

- 317 (28%) had pathogenic variants in known ID genes
- 35 patients had mutations in 'new' ID genes identified by this study
- = total yield 31%
- 17 had mutations in 2 different genes (composite phenotype)

LETTER

Extended Data Figure 3 | Number of diagnoses per gene. Histogram showing the number of diagnoses per gene for genes with at least two diagnoses from different proband samples.

ARTICLE

Prevalence and architecture of *de novo* mutations in developmental disorders

Deciphering Developmental Disorders Study*

- Further data from the DDD study + 13 other studies
- Exomes from 7,580 individuals with developmental disability
- 42% have pathogenic de novo mutations
- Developmental disorders caused by de novo mutation have prevalence of 1:213 to 1:448 depending on parental age

Excess of de novo mutations

doi:10.1038/nature21062

J F McRae et al. Nature 1–6 (2017) doi:10.1038/nature21062

JAMA Psychiatry | Original Investigation

Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders

Miriam S. Reuter, MD; Hasan Tawamie, MA; Rebecca Buchert, MA; Ola Hosny Gebril, MD; Tawfiq Froukh, PhD;

- ES in 152 consanguineous families with 1 or more child with ID
- Clear genetic cause in 55 families (37%) (50 genes)
 - 46AR
 - 2 XLR
 - 2 de novo
- Plausible genetic cause in another 48 (32%)
- Higher yield in severe ID, additional clinical features and multiplex families

Our local ID data

- Singleton exomes at VCGS
 - funded by MCRI translational genomics grant
- Cohort of 15 children
 - Severe ID (non verbal)
 - Normal microarray and Fragile X
 - No clear syndromal features
- Likely pathogenic mutations found in 7/15 patients (47%)

- 6 year old girl with global developmental delay
 - Walked at 2 years
 - Non-verbal
 - Loves water, sensory stimulation
- Calcaneovalgus deformity
- Bilateral esotropia
- 2 x UTIs

KT

- Growth parameters all 3rd-50th centile
- Normal CMA, UMS, FX, MRI

Prominent peri-orbital fullness, short palpebral fissures, prominent midface, small mouth and thin upper lip Mutations in *DDX3X* Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signalir

Lot Snijders Blok,^{1,48} Erik Madsen,^{2,48} Jane Juusola,^{3,48} Christian

- DDX3X (XLMR)
 - c.1122dupG
 - p. Q374fs
- In three large cohorts, mutations in 1.9%, 1.1%, 2.9% of females with ID
- Total 38 females with 35 distinct mutations
 - 19/35 LOF
 - 15 missense, 1 in frame deletion

Table 2. Clinical Features of Females with De Novo DDX3X Mutations							
	Percentage	Number					
Development							
Intellectual disability or developmental delay	100%	38/38					
Mild or mild-moderate disability	26%	10/38					
Moderate or moderate-severe disability	26%	10/38					
Severe disability	40%	15/38					
Developmental delay	8%	3/38					
Growth							
Low weight	32%	12/38					
Microcephaly	32%	12/38					
Neurology							
Hypotonia	76%	29/38					
Epilepsy	16%	6/38					
Movement disorder (including spasticity)	45%	17/38					
Behavior problems	53%	20/38					
Brain MRI							
Corpus callosum hypoplasia	35%	13/37					
Cortical malformation	11%	4/37					
Ventricular enlargement	35%	13/37					

Individual 8

Individual 14

Individual 20

Individual 9

Individual 15

Individual 22

Individual 10

Individual 16

Individual 12

Individual 18

Individual 26

Individual 13

Individual 19

Individual 27

Individual 37

Individual 31

Individual 32

Individual 23

Individual 33

Individual 24

Individual 11

Individual 17

Causative mutations in 7/15 patients

- MAGEL2*
 - Heterozygous mutations cause Prader-Willi phenotype and autism
- ASLX3*
 - Heterozygous mutations cause Bainbridge-Ropers syndrome
- STXBP1
 - Heterozygous mutations cause epileptic encephalopathy and intellectual disability
- DDX3*
 - X-linked dominant mutations cause intellectual disability in females
- FOXG1
 - Heterozygous mutations cause congenital variant of Rett syndrome
- GAMT
 - Autosomal recessive mutations cause cerebral creatine deficiency syndrome
 - Therapy including creatine supplementation causes improvement of stabilization of symptoms
- CTNNB1*
 - De novo heterozygous mutations cause severe intellectual disability, microcephaly, and spasticity

* identified since 2013

Autism

- 4:1 male to female gender bias
 - higher for Asperger syndrome
 - Lower when ID/dysmorphism
- Comormidities
 - intellectual disability, epilepsy, motor control difficulties, ADHD, tics, anxiety, sleep disorders, depression, gastrointestinal problems
- ASD phenotype extends into the subclinical realm – the 'Broader Autism Phenotype'
 - Autistic traits are normally distributed in clinical cases as well as in the general population.
- Twin concordance
 - 50% MZ
 - 15% DZ

Devlin and Scherer 2013

Table 1 | Recurrent structural abnormalities consistently reported in association with ASDs

Abnormality	ASD penetrance* (rate of ASD in carriers; %)	Neuropsychiatric pleiotropy [‡] (associated neuropsychiatric phenotypes)	Somatic pleiotropy [‡] (associated somatic phenotypes)
Del1q21.1	8 (REF. 129)	ID ¹³⁰ , ADHD ¹²⁹ , schizophrenia ¹³¹	Microcephaly ¹²⁹ , heart defect ¹⁵² , eye abnormalities ¹²⁹ , short stature ¹²⁹ , epilepsy ¹²⁹
Dup1q21.1	36 (REF. 133)	ID ¹³³ , schizophrenia ¹³³	Epilepsy ^{133,134} , macrocephaly ¹³³ , heart defect ¹³³
Del2q23.1	100 (REF. 135)	ID ¹³⁵ , ADHD ¹³⁵ , language disorder ¹³⁶ , motor delay ¹³⁶	Epilepsy ^{135,136} , obesity ¹³⁶ , brachycephaly ¹³⁶ , microcephaly ¹³⁶ , short stature ¹³⁶
Del2q37	25–42 (REFS 137,138)	ID ¹³⁹ , ADHD ¹³⁸	Epilepsy ¹³⁷ , short stature ¹³⁹ , obesity ¹³⁹ , heart defect ¹³⁷
Del3q29	27 (REFS 63,140)	ID ⁶³ , speech delay ⁶³ , language disorder ⁶³ , anxiety disorders ⁵³ , schizophrenia ⁶³ , bipolar disorder ⁶³	Gastrointestinal problems ⁶³ , heart defect ⁶³ , feeding problems ⁶³ , recurrent ear infections ⁶³ , abnormal dentition ⁶³
Del5q14.3	43 (REFS 141,142)	ID ¹⁴¹ , absent speech ¹⁴¹	Epilepsy ^{141,142} , capillary malformation ^{141,142}
Dup7q11.23	41 (REF. 143)	ID ¹⁴³ , ADHD ^{144,145} , anxiety disorders ^{145,146} , oppositional defiant disorders ¹⁴⁵ , speech delay ^{134,145}	Epilepsy ¹⁴³ , macrocephaly ¹⁴⁵ , brachycephaly ¹⁴⁷ , dilatation of ascending aorta ^{145,147} , patent ductus arteriosus ¹⁴⁷ , chronic obstipation ¹⁴⁷ , kidney abnormalities ¹⁴⁷
Del8p23	Unknown	ID ¹⁴⁰ , ADHD ¹³⁸	Heart defect ¹⁴⁰ , congenital diaphragmatic hernia ¹⁴⁰
Dup15q11-q13	69 (REF. 149)	ID ¹⁵⁰ , ADHD ¹⁵¹	Epilepsy ^{134,152} , heart defect ¹³⁴ , muscle hypotonia ¹⁵³ , short stature ¹⁵³
Del15q11.2	32 (REFS 154,155)	ID ^{154,155} , ADHD ^{154,155} , schizophrenia ¹⁵⁶ , OCD ¹⁵⁶ , speech delay ¹⁵⁵	Epilepsy ^{154,155} , ataxia ¹⁵⁶ , heart defect ¹⁵⁶
Dup15q11.2	43 (REF. 155)	ID ¹⁵⁴ , ADHD ¹⁵⁵ , speech delay ¹⁵⁵	Epilepsy ^{154,155} , ataxia ¹⁵⁵ , hypotonia ¹⁵⁵
Dup15q13.2-q13.3	80 (REF. 157)	ID ¹³⁴ , speech delay ¹³⁴	Epilepsy ¹³⁴ , urogenital anomalies ¹³⁴ , recurrent infections ¹³⁴
Del15q13.2-q13.3	60 (REF. 157)	ID157, ADHD157	None reported
Del16p11.2	15 (REF. 158)	ID ¹⁵⁸	Epilepsy ¹⁵⁸ , hypotonia ¹⁵⁹ , sacral dimples ¹⁵⁹ , speech articulation problems ¹⁵⁹
Dup16p11.2	Unknown	Schizophrenia, bipolar disorder ¹⁶⁰	Epilepsy ¹⁵⁹ , hypotonia ¹⁵⁹ , tremor ¹⁵⁹ , ataxia ¹⁵⁹ , sacral dimples ¹⁵⁹ , speech articulation problems ¹⁵⁹
Dup16p13.11	25 (REF. 161)	ADHD ¹⁶¹ , speech delay	Epilepsy ¹³⁴
Del17p11.2	Unknown	None reported	Epilepsy ¹³⁴
Del17q12	Unknown	Schizophrenia ¹²²	Macrocephaly ¹²² , renal anomalies ¹²²
Del22q11.2	30 (REF. 106)	Schizophrenia, ADHD, speech delay ¹¹⁵ , anxiety disorders ¹¹⁵	Heart defect ¹¹⁵ , palate abnormalities ¹¹⁵ , hypocalcaemia ¹¹⁵ , feeding difficulties ¹¹⁵ , recurrent infections ¹¹⁵ (among others)
Dup22q11.2	18 (REF. 162)	ID ¹⁶² , ADHD ¹⁶²	Heart defect ¹⁶³ , hearing loss ¹⁶³ , urogenital anomalies ¹⁶³ , palate abnormalities ¹⁶³
Del22q13.3	>50 (REF. 123)	ID ¹²³ , language disorder ¹²³	Epilepsy ¹²³ , heart defect ¹²³ , renal anomalies ¹²³ , strabismus ¹²³

- CNVs detected in 5-10% of ASD patients
- De novo and inherited
- Some patients with ASD have two or more CNVs and they tend to have a more severe presentation
- Incomplete penetrance (8-100%)

Data from Vorstman et al. NRG 2017

Most common CNV in ASD is deletion/duplication at 16p11.2

- Seen in 0.8% ASD
- Also seen in
 - ASD with additional dysmorphology
 - dev delay without ASD
 - Non-ASD psychiatric disorders
 - Some unaffected individuals

ASD Data from WES/WGS

- 18 WES/WGS performed, using >4000 families
- 3.6-8.8% of patients carry a de novo causative mutation
- Little evidence for recessive mutations
 - ? 3%

Bourgeron 2016

13

MELBOURNE

Murdoch Children Research

genetics Most genetic risk for autism resides with common variation

Trent Gaugler¹, Lambertus Klei², Stephan J Sanders^{3,4}, Corneliu A Bodea¹, Arthur P Goldberg^{5–7}, Ann B Lee¹, Milind Mahajan⁸, Dina Manaa⁸, Yudi Pawitan⁹, Jennifer Reichert^{5,6}, Stephan Ripke¹⁰, Sven Sandin⁹, Pamela Sklar^{6–8,11,12}, Oscar Svantesson⁹, Abraham Reichenberg^{5,6,13}, Christina M Hultman⁹, Bernie Devlin², Kathryn Roeder^{1,14} & Joseph D Buxbaum^{5,6,8,11,15,16}

- Gaugler (2014) estimated the genetic contribution to ASD:
 - 49% common inherited variants
 - 3% rare inherited variants
 - 3% de novo
 - 4% Mendelian (dominant, recessive)

LETTERS

Genes associated with ASDs from sequencing studies (Vortman et al. NRG 2017)

Gene	Chromosomal location	Estimated percentage of individuals with an ASD in whom this variant is identified	ASD penetrance* (rate of ASD in carriers)	Neuropsychiatric pleiotropy [‡] (associated neuropsychiatric phenotypes)	Somatic pleiotropy [‡] (associated somatic phenotypes)
KATNAL2 (REF. 37)	18q21.1	0.08	Unknown	Unknown	Unknown
POGZ ³⁷	1q21.3	0.08	Incomplete ¹⁶⁴	ID ^{164,165} , speech delay ¹⁶⁴ , language delay ¹⁶⁴ , schizophrenia ⁶¹	Microcephaly ¹⁶⁴ , obesity ¹⁶⁴ , impaired vision ¹⁶⁴
TBR1 (REFS 37,166)	2q24.2	0.08	Unknown	ID ¹⁶⁷	Unknown
ADNP ³⁷	20q13.13	0.10	Complete ¹¹⁸	ID ^{118,165} , ADHD ¹¹⁸	Recurrent infections ¹¹⁸ , short stature ¹¹⁸ , heart defect ¹¹⁸ , hypotonia ¹¹⁸ , hypermetropia ¹¹⁸ , epilepsy ¹¹⁸ , hyperlaxity ¹¹⁸
SYNGAP1 (REF. 37)	6p21.32	0.10	Unknown	ID ^{168,169}	Epilepsy ¹⁶⁸
GRIN2B ^{37,166}	12p13.1	0.13	Unknown	ID ¹⁷⁰	Epilepsy ¹⁷⁰
ANK2 (REF. 37)	4q25-q26	0.13	Unknown	None reported	Heart arrhythmia ¹⁷¹
ARID1B ³⁷	6q25.3	0.13	Incomplete ¹⁷²	ID ¹⁷² , speech impairment ^{172,173}	Short stature ¹⁷⁴ , hypertrichosis ¹⁷³ , cryptorchidism ¹⁷³ , epilepsy ¹⁷³ , vision impairment ¹⁷³
SCN2A ³⁷	2q24.3	0.13	Incomplete ⁵⁹	ID ⁶⁰ , schizophrenia ⁶¹	Epilepsy ⁶² , episodic ataxia ⁶²
DYRK1A ^{37,166}	21q22.13	0.13	Incomplete ¹⁷⁵	ID ^{175,176} , speech impairment ^{175,176} , ADHD ¹⁷⁵ , anxiety ¹⁷⁵	Microcephaly ^{175,176} , epilepsy ^{175,176} , vision impairment ¹⁷⁵ , short stature ¹⁷⁵ , gastrointestinal symptoms or feeding difficulties ^{175,176}
CHD8 (REFS 37,166)	14q11.2	0.21	Incomplete ³²	lD ^{32,177} , schizophrenia ¹⁷⁷ , speech delay ¹⁷⁷ , sleep problems ³²	Macrocephaly ^{32,177} , gastrointestinal symptoms ³²

Melbourn Children's

Ø.

MELBOURNE

Murdoch Children Research

ASD Genetic Landscape MELBOURNE Multigenic Rare Rare **ASD-related** including rare Environment Rare CNVs chromosome penetrant syndromes and common effects abnormalities genes variation 10% 5% 5% 5% ? 50% unknown unknown e.g. e.g. e.g. e.g. 16p11.2, PTCHD1, Trisomy 22q11.2, NRXN1, FXS, TS 21, XXY 17p12 SHANK1/2

Genes converge in a limited number of biological pathways including chromatin remodelling, protein translation, actin dynamics, and synaptic functions

Complex interplay between common and rare variants: For some individuals, a single de novo mutation is sufficient to cause autism vs. for others, it is the accumulation of many (>1000) risk alleles

Original Investigation

Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder

JAMA 2015

Kristiina Tammimies, PhD; Christian R. Marshall, PhD; Susan Walker, PhD; Gaganjot Kaur, MRes; Bhooma Thiruvahindrapuram, MSc; Anath C. Lionel, PhD;

Positive Results	(High Functioning) Essential Group	Equivocal Grou	p Complex Group	P Value for 3-Group Comparison
CMA, No./total No.	7/168	4/37	13/53	< 001
% (95% CI)	4.2 (1.7-8.4)) 10.8 (3.0-25.4) 24.5 (13.8-38.3)	<.001
WES, No./total No.	2/64	2/7	4/24	02
% (95% CI)	3.1 (0.0-10.	8) 28.6 (3.7-71.0)) 16.7 (4.7-37.4)	.02
CMA and/or WES, No./to	otal No. 4/64	2/7	9/24	001
% (95% CI)	6.3 (1.7-15.)	2) 28.6 (3.7-71.0)) 37.5 (18.8-59.4)	100.

CONCLUSIONS AND RELEVANCE Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.

The Future I:

We owe it to our families to provide an explanation for their child's disability

The Future II: What about the Murdoch Children Research MELBOURNE other 50%? New genes Karyotype 4% Microarray Non-coding DNA 11% **Complex genetics** - Digenic/polygenic Mutation types not detected by NGS Mosaicism _ Unknown Exome/Gen Epigenetic — 50% ome - Trinuclueotide repeats 35% Non genetic

The Future III

 Biological research and improved medical care must be accompanied by innovations to provide a more inclusive world for people with neurodisabilities

