How can we incorporate proteomic and other 'omic data into clinical oncology?

Professor Roger Reddel FAA FRACP Children's Medical Research Institute Westmead, NSW

Fundamental problems with treating cancer

- Cancers are derived from own cells
- Cancer is caused by multiple mutations in DNA
 - Genetic instability \rightarrow many changes, most random
 - \rightarrow heterogeneity within tumours
 - \rightarrow treatment resistance
 - Every cancer is different

→ need to "personalise" treatment

The very long history of personalised cancer treatment

- Tumour type
 - e.g., oophorectomy for breast cancer (Beatson, Lancet 1896)

Histopathology

- e.g., testicular cancer
 - seminomas \rightarrow respond to radiotherapy
 - non-seminomatous germ cell tumours
 → respond to platinum regimens (FDA approved 1978)

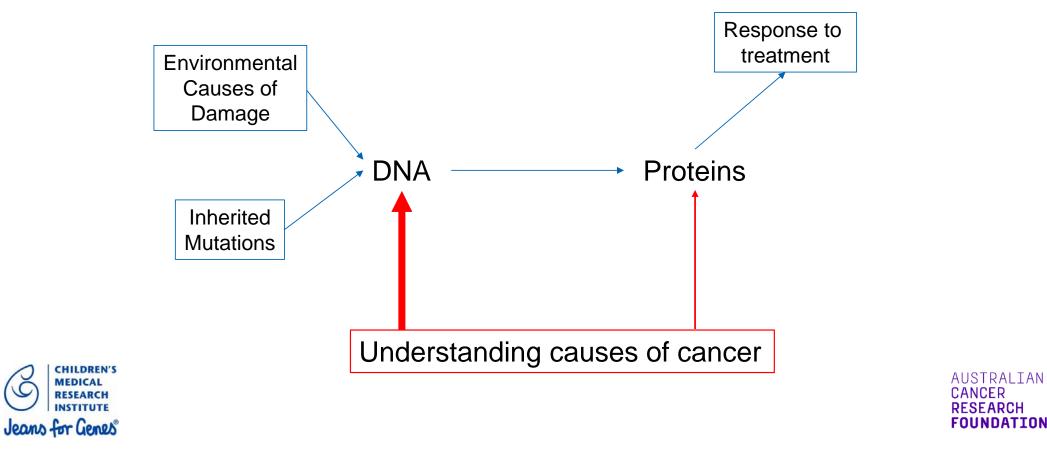
Molecular data

e.g., oestrogen receptor in breast cancer

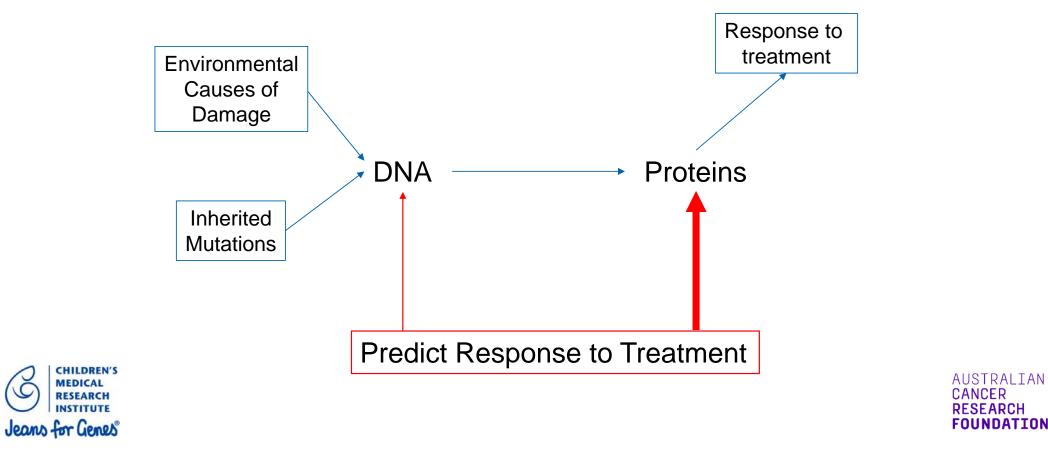
 \rightarrow predicts response to antioestrogens

(Tamoxifen was approved for use in the UK in 1972)

"Big" molecular data = 'omics


- Genomics DNA
- Epigenomics
- Transcriptomics RNA
- Proteomics
- Glycomics
- Metabolomics
 - etc.

'omics studies have transformed our understanding of cancer

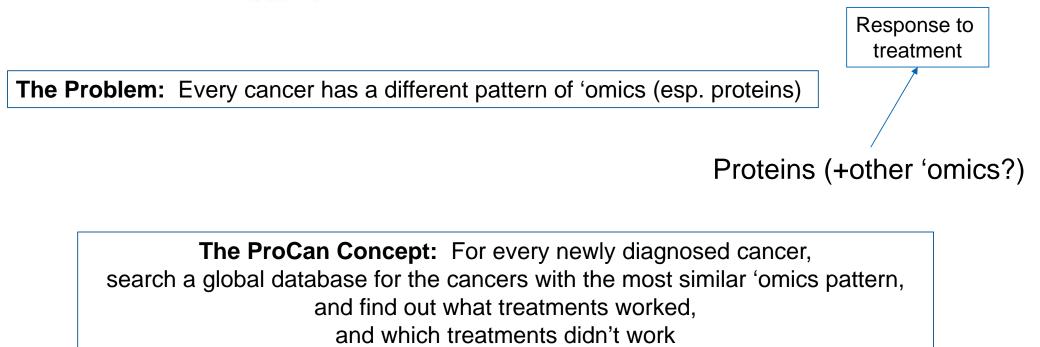


but how can we incorporate 'omics into clinical oncology practice?

Genes and Proteins in Cancer

Genes and Proteins in Cancer

The ACRF International Centre for the **Pro**teome of Human **Can**cer


Professor Phil Robinson

ProCan's Very Simple Concept

Simple concept – complex project

ProCan's Very Simple Concept

Proteomics is not new (the word was coined in Australia in 1994) so why hasn't this been done before?

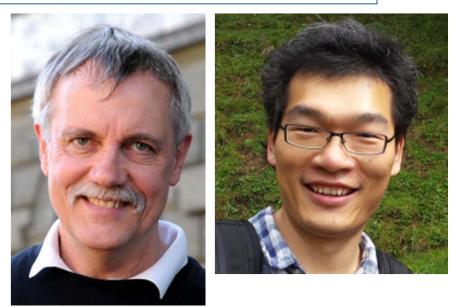
The Barrier: Up until now, it has only been possible to study the proteome of small numbers of cancers, using relatively large samples, and the results were not always reproducible from one lab to another

Project plan:

analyse the proteome of 70,000 cancers of all types with known outcomes of treatment over the next 5-7 years

ProCan's technology

- 1. New "disruptive" technology
- 2. Purpose-built data factory



ProCan's technology

- 1. New "disruptive" technology
- 2. Purpose-built data factory

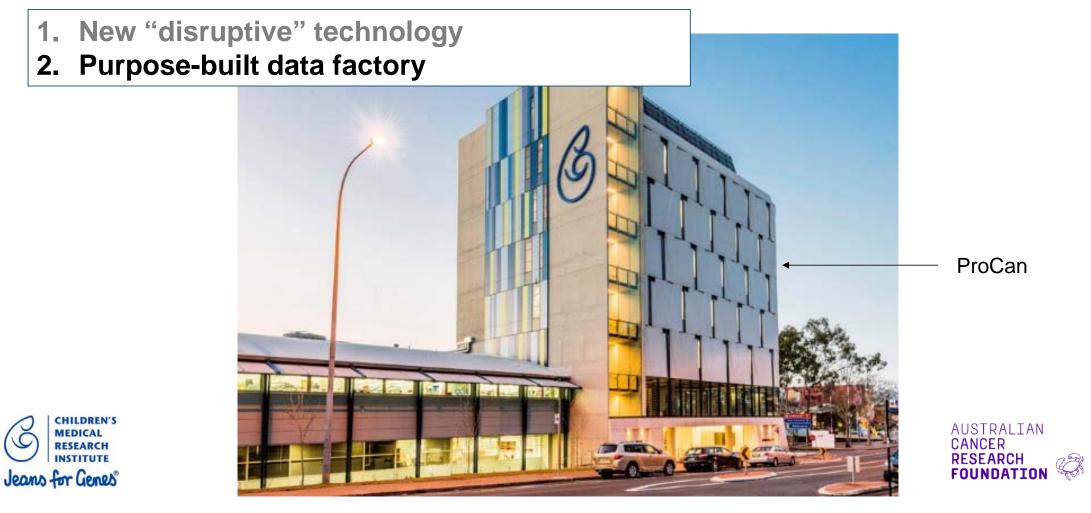
Professor Rüdi Aebersold (ETH Zurich)

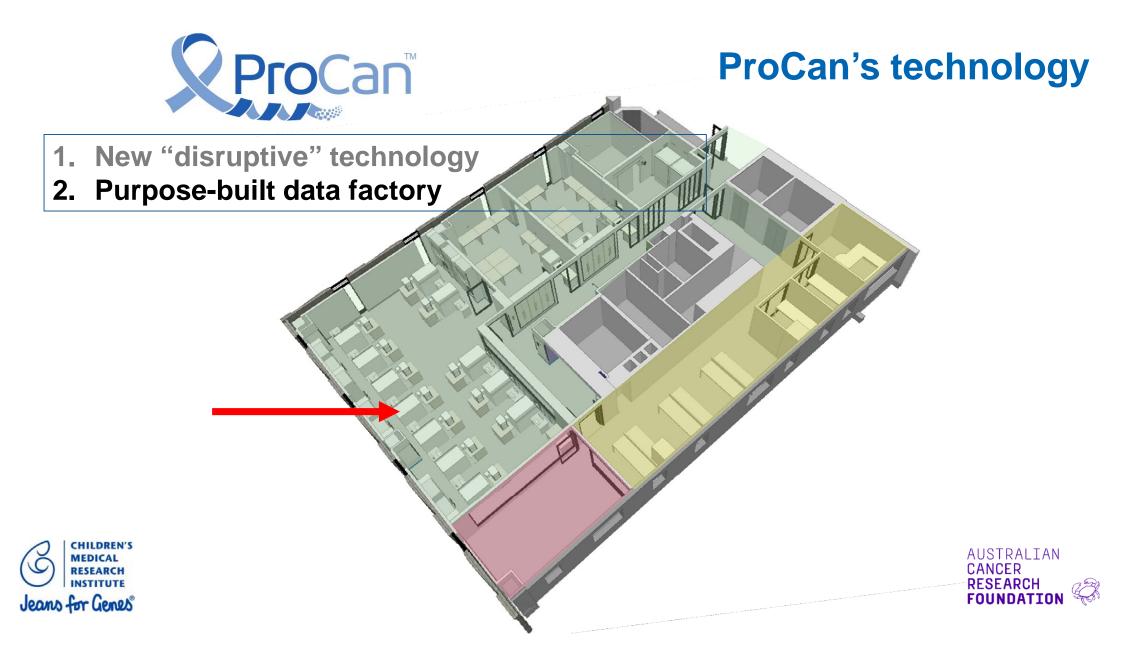
Dr Tiannan Guo

Guo T, et al. *Nature Medicine*. 2015. 21, 407–413

- 1. New "disruptive" technology
- 2. Purpose-built data factory

Jeans for Genes


ProCan's technology


- Very small samples
- Highly reproducible
- Fast
- Complete record
 of all proteins

ProCan's technology

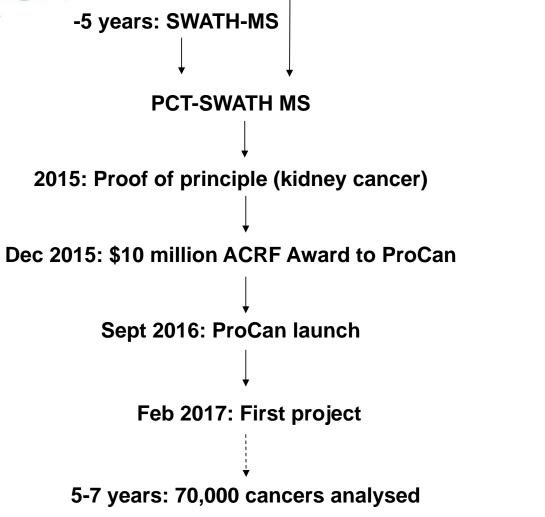
ProCan's technology

1. New "disruptive" technology

2. Purpose-built data factory

"Industrial" scale

One of only two "industrialised" proteomics centres globally and the only one focused on cancers



-10 years: PCT

ProCan's timeline

Jeans for Genes

Year 2-3: replace most or all existing cancer diagnostics

Year 5: computation-based diagnosis and individualised treatment-decision report

Name: Med Rec No.:	Jane Citizen 12345678	
Sample:	1 mg lower medial quadrant L. breast	
Procedure date:	26 August 2022	
Report date:	28 August 2022	
Classification:	Adenocarcinoma breast Luminal-B "Metastatic Risk-3"	
Proteins:	Estrogen Receptor – positive (xxx Units) Progesterone Receptor – positive HER-2 – negative BRCA1 – low "Protein YY – high"	
Responds to:	Antiestrogen – 95% PARP inhibitor – 78% "New drug XX" – 88%	

DNA data also? Other 'omics?

> AUSTRALIAN CANCER RESEARCH FOUNDATION

- Replace most or all existing cancer diagnostics
- Faster
- More objective same quality for patient in rural Australia as in major city hospital
- Cheaper?
- Enhanced ability to predict best treatment for individual patient
- Discovery of new cancer treatment targets?

ProCan Collaborations

Every aspect of the ProCan project is designed to be collaborative on a national and international scale

The 70,000 tumours will be supplied by ~100 different collaborating research groups

Data will be made available to other researchers and clinicians globally

ProCan Collaborations

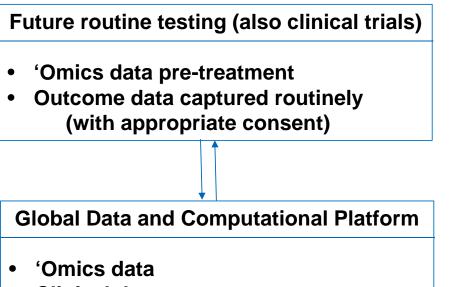
ProCan collaboration with Cancer Moonshot announced by Vice-President Joe Biden on 17 July 2016

ProCan Collaborations

Ideal collaborations:

- Clinical expertise!
- Retrospective collection of tumours with <u>treatment outcomes already known</u> (or prospective collection where outcomes will be known within a few years)
- Cohort has been collected for the purpose of addressing an important clinical question (e.g., as part of a clinical trial)
- Other 'omic data already available (e.g. whole genome sequencing)
- Tumours contribute to a balanced representation of all cancer types within ProCan's 70,000 tumour capacity

ProCan "data factory"


- Proteomics
- Other 'omics capacity to be added if justified

Other data sources

- Clinical
- Other 'omics
- Other high-throughput proteomics facilities in future?

Data Platform

- Clinical data esp. treatment outcomes
- Algorithm-driven individualised treatment recommendations

(self-learning system)

AUSTRALIAN CANCER RESEARCH FOUNDATION

Skills of core facility team include:

- proteomics
- anatomical pathology
- laboratory management
- software engineering
- bioinformatics
- health economics

Team leaders

Proteomics (Scientific Director): Tiannan Guo Anatomical Pathology: Rosemary Balleine Software Engineering: Brett Tully Bioinformatics: to be appointed soon

ProCan Personnel

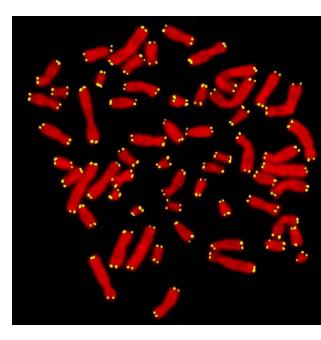
Many opportunities for involvement of PhD students and clinical trainees, especially :

- medical oncology
- radiation oncology
- surgical oncology
- anatomical pathology
- biochemical pathology
- clinical bioinformatics

It is our intention to source all of the funds needed to provide the proteomics data to our collaborators "in exchange" for everything that they bring to the collaboration (clinical expertise, tumour sets and associated data).

Funding model

We will also be very happy to submit joint grant applications to help obtain operating expenses for proteomics.



CMRI has substantial expertise in telomere research and DNA repair.

Telomere length, telomere length maintenance mechanisms, and DNA repair processes are very likely to contribute to outcomes of cytotoxic chemotherapy and radiation treatment.

All of these parameters will be explicitly measured as part of the ProCan project.

Finally

Name: Medicare No.:	Jamie Smith 12345678	N.C.
Sample:	Brain tumour	14
Date of procedure:	16 Sept 2021	
Date of report:	18 Sept 2021	
Tissue classificatio	on: Glioblastoma De novo Molecular category	4
Response markers: MGMT – low (xxx Units) EGFRvIII – high VEGF - high PDGFR – high PML - low Protein XX – high		
Likely response to:	 Temozolomide Tyrosine kinase inhibitor Cancer-killing virus treatme New treatment targeting pro- 	

