

Linked Administrative Data for Pharmacovigilance: Direct-acting oral anticoagulants and intracranial haemorrhage

Dr Margaret Wilson^a, Dr Claire Behm^a, Dr Clare King^a, Mr Mark Bartlett^b, Dr Xenia Dolja-Gore^b, Dr Ian McRae^c

^aSignal Investigation Unit, Pharmacovigilance and Special Access Branch, Therapeutic Goods Administration; ^bSax Institute; ^cAustralian National University

Background

- Clinical trials have limitations in their ability to detect safety issues for new medicines.
- Spontaneous reporting system for adverse events are subject to significant underreporting.
- Population-level health data is increasingly being used to investigate safety signals for medicines.

Background

- Requirements for suitable research question
 - Identification of medicine exposure and outcome in available datasets
 - Sufficient number of exposed study participants to achieve adequate power
 - Issues with identifying known confounders within available datasets

Background

- Clinical trials showed lower rates of bleeding for dabigatran compared with warfarin
- Large number of adverse drug reaction (ADR) reports for bleeding from various sites post registration
 - Southworth MR, Reichman ME, Unger EF. Dabigatran and postmarket reports of bleeding. *NEJM* 2013; 268(14): 1272-1274.
- Is this a reporting bias for new medicines, or are bleeding rates higher in non-trial settings?

Aim and objectives

- This project aimed to assess the feasibility of using linked administrative health data to enhance current pharmacovigilance methods, using the Sax Institute's 45 and Up study.
- Objective:
 - Investigate the association between specific drugs and adverse drug reactions within linked 45 and Up study datasets.

Direct acting oral anticoagulants vs warfarin and Intracranial haemorrhage

This project receives institutional oversight from the NSW Population and Health Services Research Ethics Committee and the ACT Health Human Research Ethics Committee.

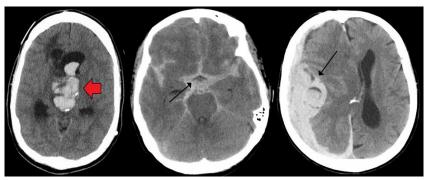
The Sax Institute 45 and Up study funding partners are Cancer Council NSW, National Heart Foundation of Australia (NSW division), NSW Ministry of Health, NSW Government Family and Community Services – Ageing, Carers and the Disability Council NSW, and the Australian Red Cross Blood Service.

Methods

Sax Institute 45 and Up Study

- Ongoing, longitudinal study of NSW residents aged 45 years and over
- Cohort size N=267,153
- Probabilistic data linkage of survey and administrative datasets undertaken by the NSW Centre for Health Records Linkage (CHeReL).

- Further information:
 - 45 and Up Study Collaborators. Cohort Profile: The 45 and Up Study. Int J Epid. 2008;37(5):941-947.
 - https://www.saxinstitute.org.au/our-work/45-up-study/



Methods

Direct-acting oral anticoagulants and intracranial haemorrhage

- Incident user, cohort study
- Study population participants with PBS concessional status
 - Exposure apixaban, rivaroxaban or dabigatran users
 - Comparator warfarin users
 - Exclusions PMHx mechanical heart valve, mitral stenosis, severe renal impairment
 - Outcomes intracranial haemorrhage, mortality
 - Observation period January 2009 to December 2015; Index date at first target-medicine dispensing

Methods

- Statistical analysis
 - Cox proportional hazards and marginal structural modelling
 - Weighting by propensity score and inverse probability of treatment
 - Combined and individual models for DOACs
 - Sensitivity analysis:
 - Limit indication of use to non-valvular atrial fibrillation using hospital discharge information

Re	sults	th an ICH- 11 (0.3%) 72 (1.0%) 83 death oup) th an all- 75 (1.5%) 536 (7.7%) 611		
Nu rela red Nu can gro Ma	Sample size (% of total sample)	4,316 (38%)	6,976 (62%)	11,292
	Number of participants with an ICH- related hospitalisation or death record (% of treatment group)	11 (0.3%)	72 (1.0%)	83
	Number of participants with an all- cause death record (% of treatment group)	75 (1.5%)	536 (7.7%)	611
	Male	45.3%	51.5%	p<0.001
	Mean age	71.1%	72.8%	p<0.001
	Previous history ICH	0.5%	0.9%	p<0.02
	Coprescribed antiplatelet	4.1%	8.9%	p<0.0001

Model	Sample size by exposure group		Hazard ratio, 95% CI	P value
	DOAC	Warfarin		
Combined DOAC	4316	6976	0.61, [0.46, 0.80]	0.0003
Dabigatran	484	6976	0.52, [0.27, 0.98]	0.04
Rivaroxaban	2825	6976	0.51, [0.37, 0.72]	<0.0001
Apixaban	1007	6976	0.56, [0.35, 0.90]	0.02
Users with AF/dabigatran	218	2500	0.43, [0.18, 1.05]	0.07
Users with AF/rivaroxaban	551	2500	0.64, [0.39, 1.05]	0.08
Users with AF/apixaban	480	2500	1.01, [0.62, 1.64]	0.1

Model	Sample size by treatment group		Hazard ratio, 95% CI	P value
	DOAC	Warfarin		
Combined DOAC	4316	6976	0.61, [0.46, 0.80]	0.0003
Dabigatran	484	6976	0.52, [0.27, 0.98]	0.04
Rivaroxaban	2825	6976	0.51, [0.37, 0.72]	<0.0001
Apixaban	1007	6976	0.56, [0.35, 0.90]	0.02
Users with AF/dabigatran	218	2500	0.43, [0.18, 1.05]	0.07
Users with AF/rivaroxaban	551	2500	0.64, [0.39, 1.05]	0.08
Users with AF/apixaban	480	2500	1.01, [0.62, 1.64]	0.1

Model	Sample size by treatment group		Hazard ratio, 95% CI	P value
	DOAC	Warfarin		
Combined DOAC	4316	6976	0.61, [0.46, 0.80]	0.0003
Dabigatran	484	6976	0.52, [0.27, 0.98]	0.04
Rivaroxaban	2825	6976	0.51, [0.37, 0.72]	<0.0001
Apixaban	1007	6976	0.56, [0.35, 0.90]	0.02
Users with AF/dabigatran	218	2500	0.43, [0.18, 1.05]	0.07
Users with AF/rivaroxaban	551	2500	0.64, [0.39, 1.05]	0.08
Users with AF/apixaban	480	2500	1.01, [0.62, 1.64]	0.1

Discussion

- Findings consistent with other studies utilising similar methodologies in different jurisdictions (US¹, NZ²), indicating a **lower risk of intracranial haemorrhage for DOACs compared with warfarin**.
 - Significantly lower rate of ICH in DOAC users than that reported in clinical trials³
 - Study participants hospitalised or dying in other jurisdictions
 - Poorer compliance with treatment in real-world setting
 - Incomplete outcome measurement

¹Graham DJ, et al. Circulation. 2015; 131: 157-164.

²Nishtala PS, et al. Int J Cardiol. 2016; 203: 746-752.

³VHA Pharmacy Benefits Management Services. Medical Advisory Panel and VISN Pharmacist Executives. Drug Class Review: Target Specific Oral Anticoagulants Dabigatran (Pradaxa), Rivaroxaban (Xarelto), and Apixaban (Eliquis). 2014.

Strengths

Rich data source
Large sample size
"Real world" medicine
use

Limitations

Observational
Healthy participant bias
Choice of medicine and ADR
Lack of info on prescribing indication
Lack of primary care data

Significance for public health

Harm from medicines is a serious threat to public health

Pharmacovigilance aims to prevent and reduce harms associated with medicine use

Need for real-world data

Comparative effectiveness

Increased capacity within TGA for future research

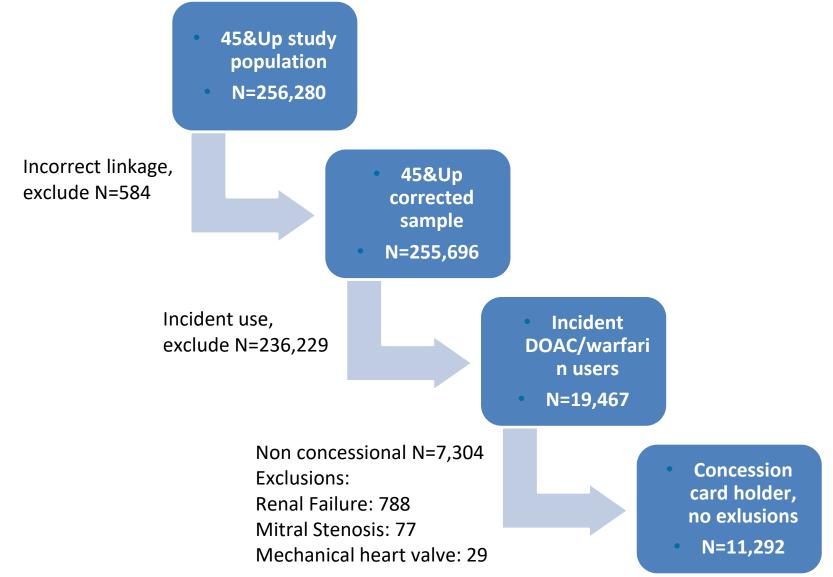
Conclusion

Use of linked administrative datasets for pharmacovigilance is feasible

Choice of research question is crucial

Acknowledgements

- Project team
- Sax Institute
- Participants of the 45 and Up study



Australian Government

Department of Health

Therapeutic Goods Administration

