Identification of children with Type 1 Diabetes Suitable for Antigen-specific Immunotherapy

Yassmin Musthaffa¹,², Emma Hamilton-Williams², Mark Harris¹,², Ranjeny Thomas²

¹: Department of Endocrinology and Diabetes, Lady Cilento Children’s Hospital, South Brisbane, QLD.
²: University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland Brisbane, QLD.
Background

What we know about the cause and treatments for Type 1 Diabetes (T1D)

• Autoimmune disease
 • T cell-mediated pancreatic β-cell destruction

• Increasing incidence, Significant biopsychosocial burden

• Current (insulin replacement) therapies inadequate

• Need to stop the autoimmune process → preserve β-cells
 • Better metabolic control, less severe hypoglycaemia, fewer long term complications
 • Better quality of life

* β-cell = Insulin producing cells of the pancreas

DCCT 1993, EDIC 2009
Immune therapy has the potential to cure and/or prevent T1D
Developing Antigen Specific Immunotherapy

The 3 therapeutic targets

1. Identify the auto-antigen

2. Identify individuals in whom self-antigen recognition occurs

3. Change the cross-talk between Dendritic Cells (DC) and T cells (occurs via NF-κB activation)
Developing Antigen Specific Immunotherapy

Dendritic cells (DC) as therapeutic targets in T1D

Regulating the presentation of islet autoantigens by DCs to autoreactive T cells can restore self-tolerance.
Developing Antigen Specific Immunotherapy

The 3 therapeutic targets in T1D

1. Identify the antigenic target
 Proinsulin

2. Identify individuals in whom self-antigen recognition occurs

3. Change the cross-talk between APC and T cells
 (via NF-κB activation)

Calcitriol
 (NF-κB inhibitor)
The T-cell response to Pro-insulin peptides

Hypothesis

CD4+ T-cell responses in individuals with T1D will vary according to age, HLA*-type, disease duration, and C-peptide

Aims

To (A) identify and (B) characterise individuals with T1D who have CD4+ T-cell responses to established islet auto-antigens

* HLA = Human leucocyte antigen
Project overview and methodology

1. HLA typing
2. Isolate PBMC*
3. Label PBMC with Fluorescent dye CFSE
4. Incubate PBMC with islet autoantigens
 - Proinsulin and Hybrid Insulin Peptides
5. Measure CD4+ T cell proliferation with Flow Cytometry

*PBMC – Peripheral Blood mononuclear cells

Divided cells (dim) Undivided cells (bright)

CD4+ T-cell proliferation in response to (PI33-63)
The different *in vitro* stimulation conditions

1. Negative control: No Antigen

2. Positive control: Human αCD3 / Tetanus Toxoid

3. Synthetic Islet Peptides
 - Pro-insulin peptides
 - Name: PI$^{33-63}$
 Sequence: EAEDLQVGQVELGGPGAGSLQPLALEGSLQ
 - Name: PI$^{48-62}$
 Sequence: PGAGSLQPLALEGSL
 - Name: PI$^{40-52}$
 Sequence: GQVELGGGPGAGS

4. Hybrid Insulin peptides (HIPs)
 - Name: hEGGG:C-pep
 Sequence: GQVELGGGEAEDLQV
 - Name: hEGGG:IAPP2
 Sequence: GQVELGGGANVEVLK
 - Name: hEL:A-chain
 Sequence: SLQPLALGIVEQCC

Human Proinsulin

![Human Proinsulin Structure](image)
Calculating the Cell Division Index (CDI)

T cell proliferation in response to antigen stimulation is defined as the CDI

\[
CDI = \frac{\text{number of divided } \text{CD}4^+ \text{ cells per 5,000 CD}4^+ \text{ CFSE}^{\text{undivided}} \text{ from “with antigen” group}}{\text{number of divided (CD}4^+) \text{ from the “without antigen” group}}.
\]
Results

Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls</th>
<th>All patients</th>
<th>T1D < 3 months (early-onset T1D)</th>
<th>T1D > 3 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>10</td>
<td>48</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Mean duration of diagnosis</td>
<td></td>
<td></td>
<td>1.44</td>
<td>0.05</td>
</tr>
<tr>
<td>Mean age (years; ± SD)</td>
<td>35.14 ± 10</td>
<td>10.1 ± 3.8</td>
<td>9.3 ± 4.1</td>
<td>10.3 ± 3.5</td>
</tr>
<tr>
<td>Mean Age at diagnosis (years)</td>
<td></td>
<td></td>
<td>8.8 ± 3.7</td>
<td>9.1 ± 4.3</td>
</tr>
<tr>
<td>Gender (female:male)</td>
<td>7:3</td>
<td>21:27</td>
<td>7:9</td>
<td>14:18</td>
</tr>
<tr>
<td>Body Mass index (kg/m²± SD)</td>
<td>25.1 ± 5.8</td>
<td>19.72 ± 4.5</td>
<td>17.9 ± 4.1</td>
<td>20.6 ± 4.5</td>
</tr>
<tr>
<td>Mean insulin dose adjusted glycated hemoglobin (% ± SD)</td>
<td></td>
<td></td>
<td>11.6 ± 3.4</td>
<td>10.9 ± 2.6</td>
</tr>
<tr>
<td>Average total daily insulin dose (IU Kg⁻¹ day⁻¹; ±SD)</td>
<td></td>
<td></td>
<td>0.8 ± 0.3</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>Estimated C-peptide¹</td>
<td>0.4 ± 0.2</td>
<td>0.02 ± 0.3</td>
<td>0.5 ± 0.3</td>
<td>**</td>
</tr>
</tbody>
</table>

* p<0.05 value compares all T1D and HC
** p value compares early-onset T1D and T1D > 3 months

Results: Disease duration

CD4+ T cell responses were detected more frequently in early-onset T1D

CD4+ T CELL DIVISION INDEX ≤ 3 MONTHS

CD4+ T CELL DIVISION INDEX > 3 MONTHS

* \(p = 0.01 \), compares CDI \(\text{PI}_{33-63} \) in early-onset T1D and T1D > 3 months

<table>
<thead>
<tr>
<th>CDI ≥ 3 to any peptide</th>
<th>All Patients (n = 48)</th>
<th>22 (46%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early onset (n= 16)</td>
<td>13 (81%) **</td>
</tr>
<tr>
<td></td>
<td>T1D > 3 months (n= 32)</td>
<td>10 (31%)</td>
</tr>
<tr>
<td>Healthy Controls (n = 11)</td>
<td></td>
<td>4 (36%)</td>
</tr>
</tbody>
</table>

** \(p = 0.03 \), compares CDI for any peptide in early-onset and T1D > 3 months
Results: Peptide specificity

CD4+ T cell responses to PI_{33-63} predominate

CD4+ T-CELL RESPONSES (CDI≥3) TO ISLET PEPTIDES IN EARLY-ONSET T1D

- PI33-63: 24%
- PI48-62: 16%
- PI40-52: 9%
- hEL:A-chain: 16%
- hEGGG: IAPP2: 16%
- hEGGG: C-pep: 15%
- No response: 19%
- Responders: 81%

CD4+ T CELL DIVISION INDEX TO PROINSULIN_{33-63}

Error bars display the mean ± SD. * p = 0.01
CD4+ T cell responses occur equally across age brackets in early onset T1D

Results: The influence of age

Error bars display the mean ± SD.
CD4+ T cell responses to multiple peptides were detected more frequently in early-onset T1D.

Results:

- **Multiple peptides:***
 - 1 peptide: 17%
 - 2 peptides: 4%
 - 3 peptides: 8%
 - 4 peptides: 11%
 - 5 peptides: 4%
 - 6 peptides: 2%
 - No response: 54%

ALL T1D PATIENTS

HEALTHY CONTROLS

<table>
<thead>
<tr>
<th>CDI ≥ 3 to multiple peptides</th>
<th>All Patients (n = 48)</th>
<th>Early onset (n= 16)</th>
<th>T1D > 3 months (n= 32)</th>
<th>Healthy Controls (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 peptide</td>
<td>14 (29%)</td>
<td>8 (50%)</td>
<td>6 (19%)</td>
<td>1 (9%)</td>
</tr>
<tr>
<td>2 peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No response</td>
<td>14 (29%)</td>
<td>8 (50%)</td>
<td>6 (19%)</td>
<td>1 (9%)</td>
</tr>
</tbody>
</table>

p value compares early onset T1D against T1D > 3 months and healthy controls
Results: The influence of glycaemia

CD4+ T cell responses correlated negatively with Estimated C-peptide

<table>
<thead>
<tr>
<th></th>
<th>CDI ≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated C peptide*</td>
<td>r = -0.47 to -0.32 **</td>
</tr>
<tr>
<td>Insulin dose adjusted HbA1c</td>
<td>r = -0.18 to 0.36</td>
</tr>
</tbody>
</table>

*Clinical model incorporating age, gender, BMI-Z score, HbA1c, time since diagnosis and insulin, correlates significantly with 90-minute stimulated C-peptide measurements (adjusted R² = 0.62, P <0.0001). Buchanan et al 2019.

P < 0.05 using spearman’s test, range provided for different peptides
Results: Longitudinal CD4+ T cell responses

CD4+ T cell responses diminish with time

*CDI – Cell Division Index
Results: Cytokine responses

CD4+ T cell ‘non’ responders may demonstrate cytokine responses

* IFN-γ = Interferon-gamma, LAP = latency-associated peptide, TGF-β = transforming growth factor beta
^ T1D patient with CD4+ T cell proliferative response at day 0 (diagnosis) but not at day 150 or 330
Double Antibody positive euglycaemic individual
Summary of preliminary results

• Peptide*-specific CD4+ T-cells can be detected in peripheral blood of most children early-onset T1D, half of whom show responses to multiple islet peptides.
 • CD4+ T cells proliferative responses may diminish with time
 • CD4+ T cells may continue to produce cytokine responses
 • Further evaluation of clinical variables and cytokine profiles is warranted

• Of the peptides tested, CD4+ T-cell responses to Proinsulin\textsubscript{33-63} may be an attractive candidate for a T-cell based biomarker

* Natural Proinsulin peptides or Hybrid Insulin Peptides
Significance of our findings

• Phase Ib Clinical trial of antigen-specific immunotherapy (ASI) in Rheumatoid Arthritis

Thomas Group

• Findings from this study can support the development of ASI in T1D by identifying:
 • the best candidate peptides to incorporate into ASI
 • the patients who are most likely to respond to ASI
Acknowledgements

Funding
Pfizer Australasian Paediatric Endocrine Care Grant
University of Queensland scholarship
Juvenile Diabetes Research Foundation Travel grant(s)
Butta Clinician researcher Bursary
RACP Foundation NZ Development Scholarship
Children’s Health Foundation PhD Top up Scholarship

PhD Supervisors
Professor Ranjeny Thomas, Dr Mark Harris, Dr Emma Hamilton-Williams

Thomas Lab
Nishta Ramnoruth, Dr Kerry Buchanan, Dr Anne-Sophie Bergot, Dr Ahmed Mehdi

RACP Congress
RACP Foundation

T1D patients and families
New onset T1D team (Queensland Children’s Hospital)

Dr Hendrick Nel, Nathan Stone
Results

CD4+ T cell responses in Healthy controls

CD4+ T CELL DIVISION INDEX

PERCENTAGE OF CD4+ T-CELL RESPONSES (CDI≥2) TO ISLET PEPTIDES IN HEALTHY CONTROLS

CD4+ T cell responses were seen in 3/9 of HC (33%)
Translation into Human T1D

Finding the ‘right’ self antigen to generate a T-cell response

• Proinsulin
 • Major autoantigen in NOD mice

• Humans
 • Insulin gene locus is a T1D susceptibility gene
 • Insulin –specific antibodies are first marker of pre-diabetes
 • Insulitis only seen in islets with insulin positive cells
 • Insulin-specific CD4+ T cells isolated from blood of recent onset T1D, and from islets and pancreatic lymph nodes of donors
 • Same epitopes found from islets of different patients

Bennett 1995; Pugliese 1997
Ziegler 2013
Campbell-Thompson 2016
Mannering 2010, Kent 2005
Babon 2016, Nakayama 2017, Pathiraja/Mannering 2015
Proinsulin-derived epitopes recognized by human islet-infiltrating CD4+ T cells

Human Proinsulin

<table>
<thead>
<tr>
<th>Insulin B-Chain</th>
<th>C-Peptide</th>
<th>Insulin A Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVNQHLCGSHLVEALYLVCGERGFYTPKTRREAEDLQVGQVELGGPGAGSLQLALEGSLQKRGIVEQCTSICSLOYQLENYC</td>
<td>DQ8 x10 (5)</td>
<td>Pathiraja, V. et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>DQ8 x2 (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DQ8 x2 (1)</td>
<td></td>
</tr>
<tr>
<td>DQ8/DQ8trans x2 (2)</td>
<td>DQ8trans</td>
<td>Michels AW. et al. (2017)</td>
</tr>
</tbody>
</table>

Hybrid Insulin peptides (HIPs)

- DQ8
- DQ8
- IAPP2
- NP-Y
- IAPP1
- INS-A (Insulin A chain)
- IAPP2 (Islet amyloid polyprotein 2)
- DR4

Preliminary Human T1D Data

Proinsulin specific CD4+ T cells in islets of people with T1D

• CD4+ T cell clones isolated from the islets of a deceased T1D donor

• These clones recognised epitopes from proinsulin, insulin’s precursor.

• All the pro-insulin specific clones were restricted by HLA-DQ8, or HLA-DQ8 transdimer that only forms with HLA-DQ2/DQ8 APCs

Preliminary Human T1D Data

Proinsulin specific CD4+ T cells in peripheral blood of people with T1D

- CFSE labelled CD4+ T cell proliferation
 - Recent onset: < 100 days T1D diagnosis
 - Long standing: > 100 days T1D diagnosis
 - Healthy control: HLA matched
 - CDI (Cell division index)
 - \(\text{CDI} = \frac{\text{number of cells that have proliferated in response to antigen}}{\text{number of cells that have proliferated in absence of antigen}} \)
 - CDI \(\geq 2 \) traditionally considered a significant response;
 - CDI \(\geq 3 \) was considered to improve the specificity of the results

Michelle So, Stuart Mannering
Subjects and Samples

• Subjects
 • 200 children/adolescents from dedicated New Diagnosis T1D clinic
 • Inclusion criteria:
 • Age 2-16y (male or female) at varying stages following T1D diagnosis
 • Exclusion criteria:
 • Auto-immune disease (except treated thyroid and coeliac disease)

• Participant Samples
 • 5-15 mls blood
 • HLA-typing
 • preparation of peripheral blood mononuclear cells (PBMC) for fresh CFSE labelled CD4+ T cell readouts in response to islet peptides
 • ± Cryopreservation
Future directions

Measuring cytokine responses

- In addition to cell proliferation, CD4+ T cells may produce cytokine responses to proinsulin
 - Particularly relevant to assessing longitudinal responses
 - ? Biomarker for use with frozen samples
Measuring cytokine responses

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Relevance in Type 1 Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ*</td>
<td>Pro inflammatory</td>
</tr>
<tr>
<td></td>
<td>• Promotes CD4+ T cell effector function</td>
</tr>
<tr>
<td></td>
<td>• cytotoxic, cytoytic, cytostatic (inhibits insulin synthesis and</td>
</tr>
<tr>
<td></td>
<td>secretion), or cytocidal actions to pancreatic islets</td>
</tr>
<tr>
<td>TNF-α*</td>
<td></td>
</tr>
<tr>
<td>IL* 17a</td>
<td>Pro inflammatory</td>
</tr>
<tr>
<td></td>
<td>• Enhances IL-1b, IFN-γ, and TNF-α-induced apoptosis in human</td>
</tr>
<tr>
<td></td>
<td>islets</td>
</tr>
<tr>
<td>TGF-β (LAP*) and IL*-10</td>
<td>Anti inflammatory</td>
</tr>
<tr>
<td></td>
<td>• Suppress T cell proliferation and DCs*, Inhibit effector T</td>
</tr>
<tr>
<td></td>
<td>cell responses</td>
</tr>
</tbody>
</table>

* IFN-γ = Interferon-gamma, TNF-α = Tumour necrosis factor alpha, IL = interleukin, LAP = latency-associated peptide, TGF-β = transforming growth factor beta, DC = dendritic cell
Procedures

Incubation Period with antigenic conditions and controls

- Optimal duration of 7 days
 - Shorter periods insufficient proliferation, reduced sensitivity
 - Longer periods increased background proliferation