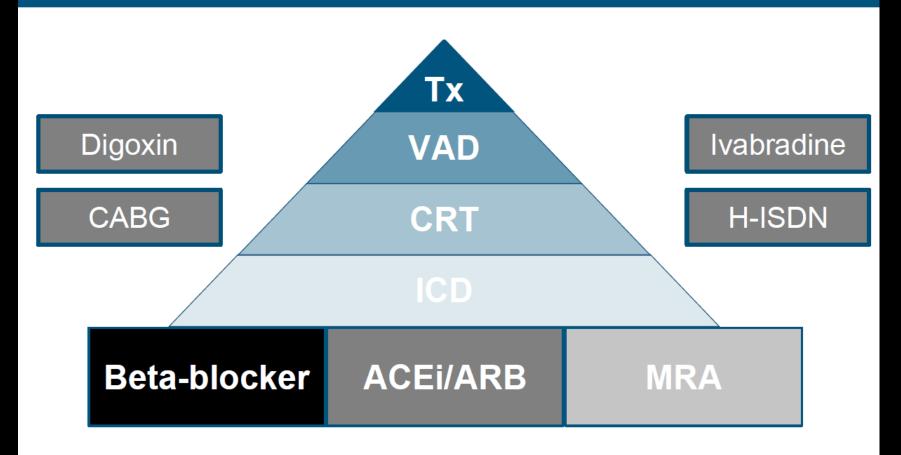
Heart Failure 2019- The world has changed

A/Prof Gautam Vaddadi

Head of Heart Failure- Northern Health

Director of Cardiac Services, Cabrini Health

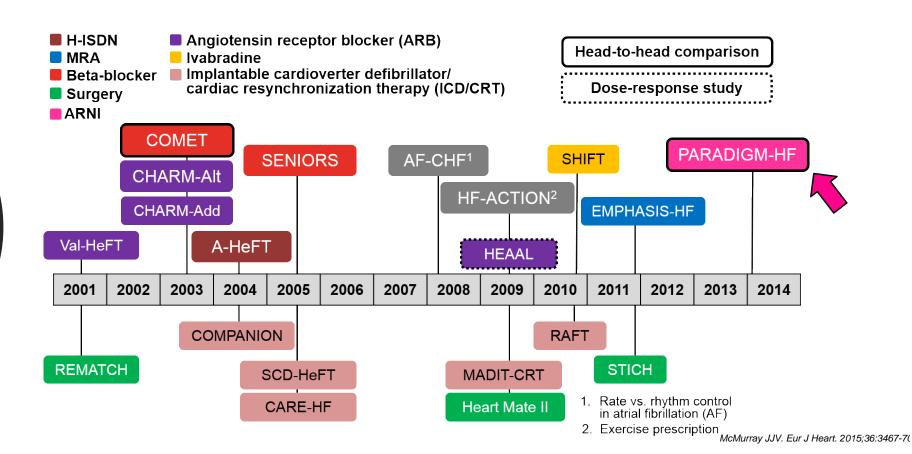
Disclosures

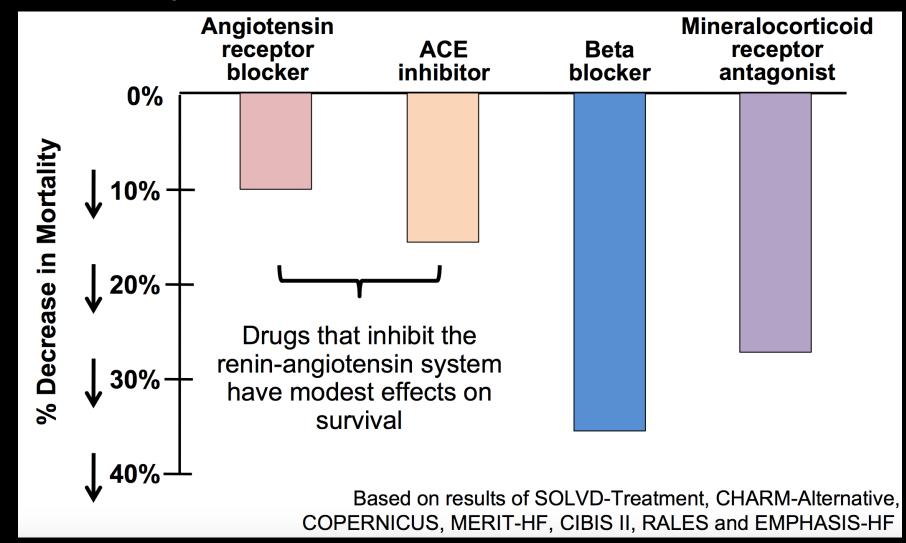

Gautam Vaddadi has received honoraria from Novartis

Heart failure- What are we talking about?

Heart failure reduced ejection fraction (HFrEF)

Not heart failure preserved ejection fraction (HFpEF)

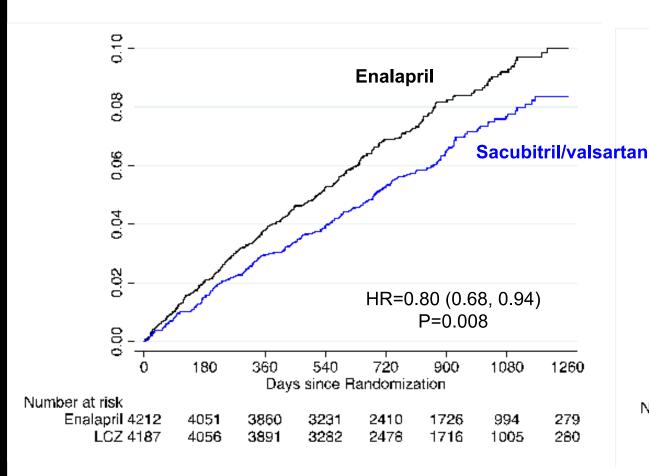

HF-REF: The building blocks of therapy


ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; CABG, coronary artery bypass graft surgery; CRT, cardiac resynchronisation therapy; HF-REF, heart failure with reduced ejection fraction; H-ISDN, hydralazine/isosorbide dinitrate; ICD, implantable cardioverter defibrillator; MRA, mineralocorticoid (aldosterone) receptor antagonist; VAD, ventricular assist device

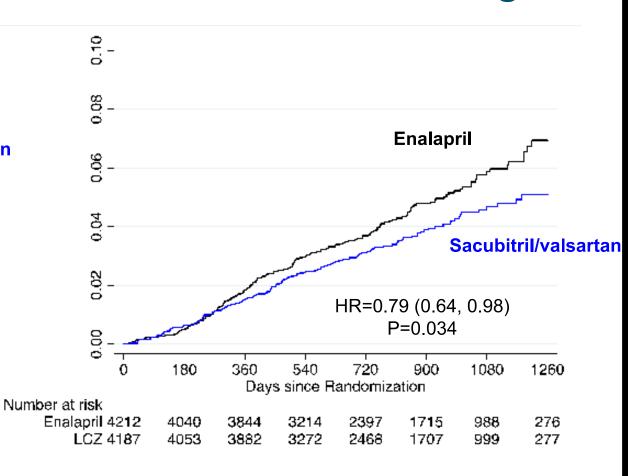
The old paradigm

Do we really need more HF therapy? Positive trials 2001 -2016

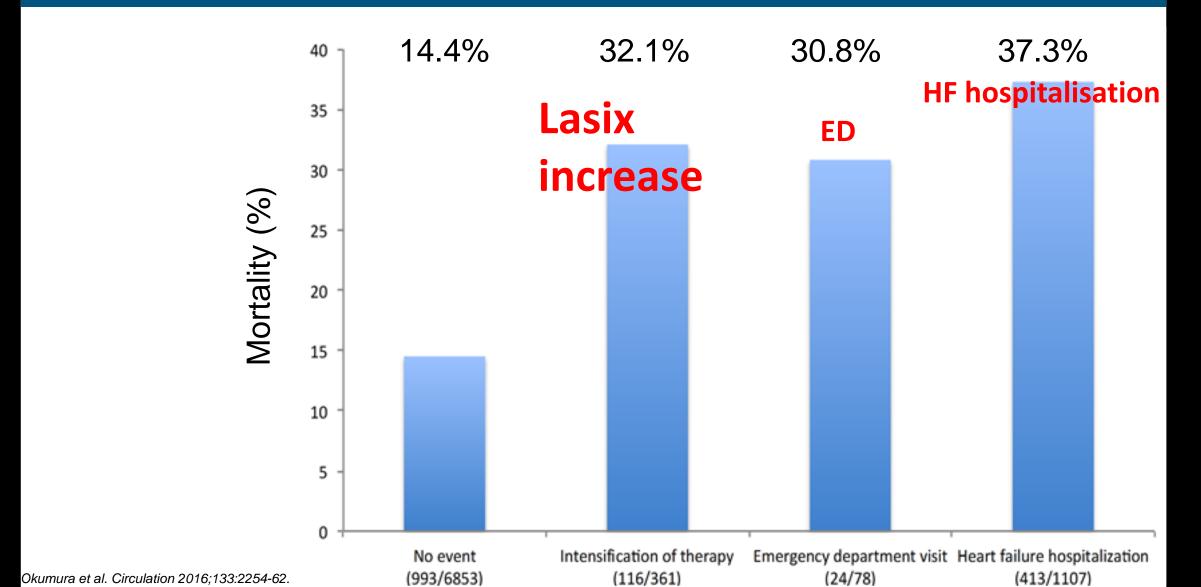
Mortality benefit of current HF therapy


Do we really need more treatments for HF?

Despite evidence-based pharmacologic therapy, morbidity and mortality associated with HF-rEF remain high, leaving opportunity for further improvement in care


5 year mortality 30% - 50%

The two major modes of death in HF


Sudden death

Death due to worsening HF

All-cause mortality (%) after a first event (or in patients with no event)

"Stability" is a MYTH

Mrs IZ- 71yo at original presentation

- 2009 "DCM" + LBBB
- Normal coronary angiogram

"stabilized on medical therapy"

- Further HF exacerbations- 2010. treated with BiV-ICD
- 2010-2016- stable with recovery of LV function

Mrs IZ- 2016

 Recurrent admissions to hospital with APO and cardiogenic shock- treated with adrenaline on 2 separate occasions....

Severe functional decline

 Repeat left and right heart cath- "low filling pressures" and normal pulmonary artery pressure

Mrs IZ- multiple admissions continue

- Echo: Blown/dilated LV, severe LV dysfunction
- Severe MR- functional/poor coaptation

TOE- "not suitable for mitral clip"

• BiV system and lead upgraded- new LV lead more lateral- QRS further narrowed....

Mrs IZ- referred to HF service for further medical management....

- NYHA class 3+
- Terrified to leave her house
- Meds:, bicor 2.5mg/d, spironolactone 25mg/d, Lasix 80mg bd, crestor, aropax, ivabradine 7.5mg bd, GTN patch 25mg
- Drugs recently down titrated due to hypotension....
- BP 90/60mmHg. Hr 75

Bloods

	Date	28/	12/16	29/	12/16	07/	01/17	14/02/	17	
s	SODIUM	137		144		136		139	mmol/L	(135-145)
S	POTASSIUM	4.9		3.8		3.7		3.2 L	mmol/L	(3.5-5.5)
S	CHLORIDE	89	L	95		92	L	95	mmol/L	(95-110)
S	BICARB.	32		34	H	30		31	$\mathtt{mmol/L}$	(20-32)
S	UREA	15.0	H	13.7	H	10.3	H	5.6	mmol/L	(3.5-9.5)
S	CREAT.	107	H	74		79		74	umol/L	(45-90)
•	eGFR	44		68		63		68		
S	T-BIL.					21	H	12	umol/L	(3-15)
S	ALP					80		70	U/L	(30-115)
S	GGT					103	H	35	U/L	(5-35)
s	ALT					47	H	16	U/L	(5-30)
S	AST					26		21	U/L	(10-35)
S	T-PROTEIN					68		70	g/L	(63-80)
S	ALBUMIN					36		40	g/L	(33-44)
S	GLOBULIN					32		30	g/L	(26-41)

NT-proBNP

Date	21/06/10	20/12/16	07/01/17	14/02/17		
S NT-proBNP	18	1244 Н	221 H	385 H	pmol/L	(<35)

Progress

• Feb 14th 2017: sacubitril/valsartan 24/26... BP 90/60

• Feb 27th 2017: sacubitril/valsartan 24/26 1 bd BP 85-90/60

March 6th 2017 bloods:

s sodiu	м 137	
S POTAS	SSIUM 4.7	
S CHLOR	RIDE 94	L
S BICAR	28	
S UREA	10.7	H
S CREAT	96	H
eGFR	50	

```
S NT-proBNP 129 H
```

Functional capacity- April 2017

- Improving
- NYHA 2
- Out in the garden
- Some postural dizziness

GTN patch ceased March 2017

May 2017

Feeling well. No admissions to hospital

Date: Coll. Time: Lab Number:		18/05/17 NS 5395573		30/03/17 11:20 4429515
Sodium Potassium Chloride Bicarbonate Urea Creatinine eGFR	*	141 4.6 103 30 7.1 109 43	*	140 5.3 99 34 7.2 93 52

2017 – Feb 2018 Progress

No admissions, independent out of the house

- Frusemide reduced to 80mg/d
- Sacubitril/valsartan 24/26 bd
- Spironolactone 25mg/d
- Bicor 2.5 mg /d
- Ivabradine 7.5mg bd
- Frusemide 80mg /daily

BP 110/70mmHg Hr 55bpm **Echo: Severe LV** dysfunction + mod MR. 6cm LV

Feb 2018 – January 2019

Sacubitril/valsartan gradually uptitrated to 97/103mg bd

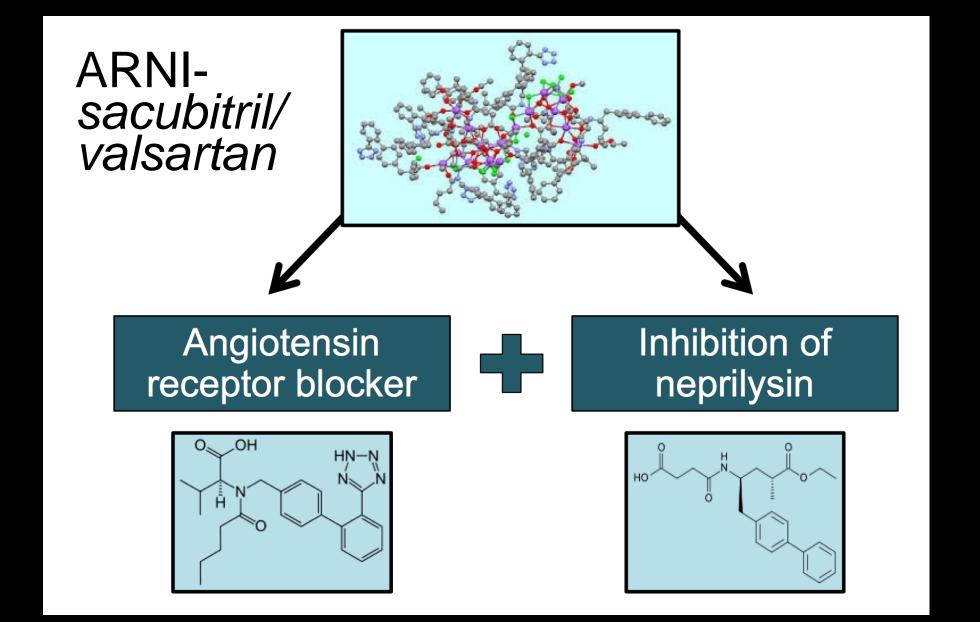
Frusemide gradually reduced to and ceased

•NYHA class 1.....

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 11, 2014


VOL. 371 NO. 11

Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure

John J.V. McMurray, M.D., Milton Packer, M.D., Akshay S. Desai, M.D., M.P.H., Jianjian Gong, Ph.D., Martin P. Lefkowitz, M.D., Adel R. Rizkala, Pharm.D., Jean L. Rouleau, M.D., Victor C. Shi, M.D., Scott D. Solomon, M.D., Karl Swedberg, M.D., Ph.D., and Michael R. Zile, M.D., for the PARADIGM-HF Investigators and Committees*

What is Neprilysin?

- Protease inactivates many peptides
- Ubiquitous expression
- Membrane protease
- Exists as a soluble active form

Valsartan

Sacubitril

PARADIGM- HF- what are we looking at?

Sacubitril/Valsartan

+ all best optimal guideline based therapy

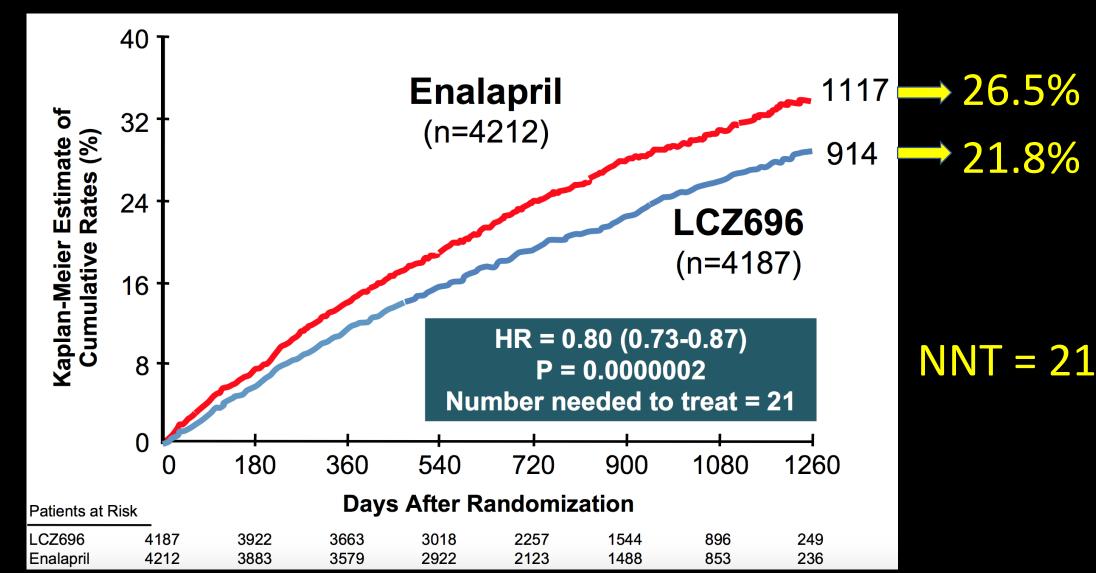
Enalapril 20mg + all best optimal guideline based therapy

- HFrEF
- EF <40%
- NYHA class II/III (71.6%/23%)

PARADIGM-HF: Endpoints

 Primary endpoint- Cardiovascular death or heart failure hospitalisation

 Designed and powered to be a cardiovascular mortality trial


PARADIGM-HF

Study stopped early

 Overwhelming benefit of Sacubitril/Valsartan

•27 months

PARADIGM-HF: CV death and Heart Failure hospitlisation

PARADIGM-HF- Well treated HF patients

Table 1. (Continued.)		
Characteristic	LCZ696 (N=4187)	Enalapril (N = 4212)
Treatments at randomization — no. (%)		
Diuretic	3363 (80.3)	3375 (80.1)
Digitalis	1223 (29.2)	1316 (31.2)
Beta-blocker	3899 (93.1)	3912 (92.9)
Mineralocorticoid antagonist	2271 (54.2)	2400 (57.0)
Implantable cardioverter–defibrillator	623 (14.9)	620 (14.7)
Cardiac resynchronization therapy	292 (7.0)	282 (6.7)

Beta blocker use >90%

PARADIGM-HF: Adverse Events

Increase in hypotension

Better for renal function and potassium

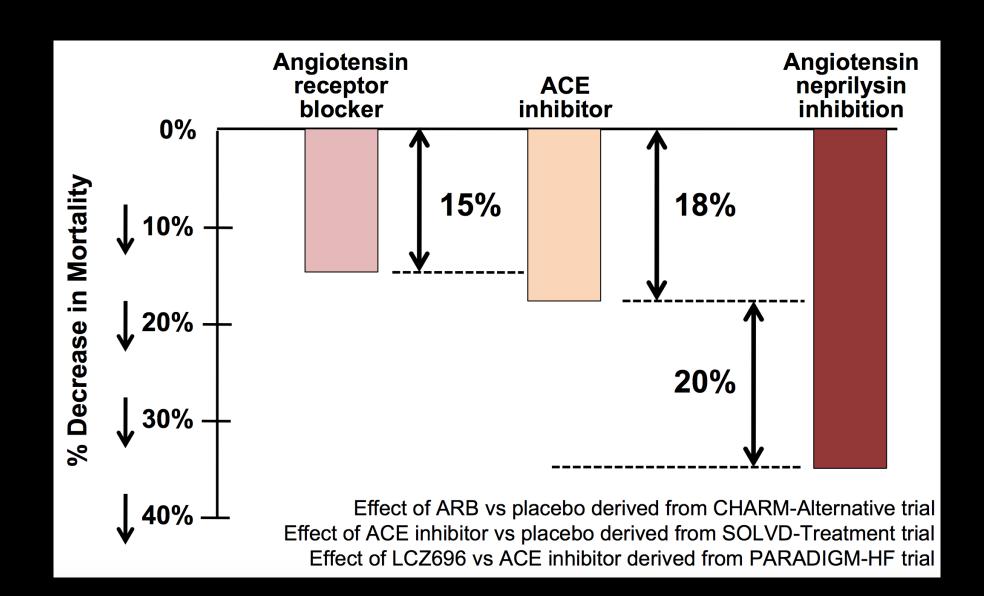
Less cough	LCZ696 (n=4187)	Enalapril (n=4212)	P Value		
Prospectively identified adverse events					
Symptomatic hypotension	588	388	< 0.001		
Serum potassium > 6.0 mmol/l	181	236	0.007		
Serum creatinine ≥ 2.5 mg/dl	139	188	0.007		
Cough	474	601	< 0.001		

What about angioedema?

	LCZ696 (n=4187)	Enalapril (n=4212)	P Value
Angioedema (adjudicated)			
Medications, no hospitalization	16	9	NS
Hospitalized; no airway compromise	3	1	NS
Airway compromise	0	0	

No significant difference

Discontinuation for adverse events


Significantly more patients in the Enalapril arm discontinued due to renal dysfunction

	LCZ696 (n=4187)	Enalapril (n=4212)	P Value
Discontinuation for adverse event	449	516	0.02
Discontinuation for hypotension	36	29	NS
Discontinuation for hyperkalemia	11	15	NS
Discontinuation for renal impairment	29	59	0.001

PARADIGM-HF: Summary

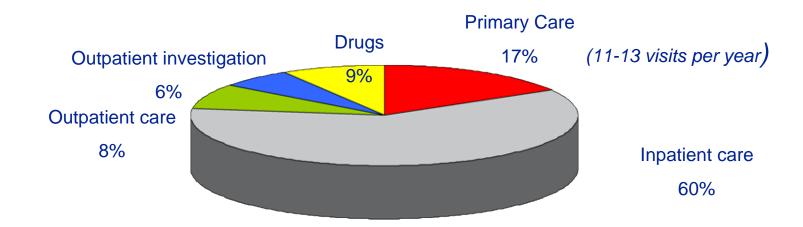
- In heart failure reduced ejection fraction on optimal medical therapy Sacubitril/Valsartan was significantly more effective than Enalapril
 - Reduce CV death and HF hospitalisation
 - Reduce all-cause mortality
 - Improved symptoms and physical limitations
 - Better tolerated than Enalapril

20% more benefit with ARNI over standard care

PARADIGM-HF: Secondary endpoints

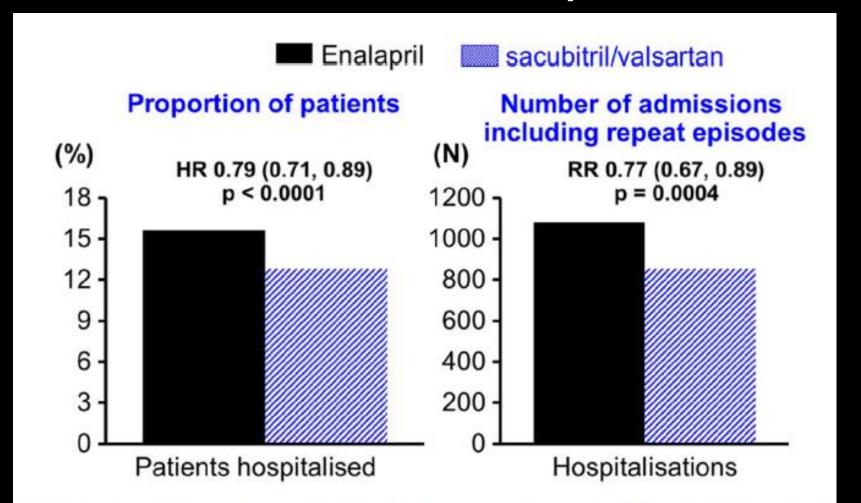
	LCZ696 (n=4187)	Enalapril (n=4212)	Treatment effect	P Value
KCCQ clinical summary score at 8 months	- 2.99 ± 0.36	- 4.63 ± 0.36	1.64 (0.63, 2.65)	0.001
New onset atrial fibrillation	84/2670 (3.2%)	83/2638 (3.2%)	Hazard ratio 0.97 (0.72,1.31)	0.84
Protocol-defined decline in renal function	94/4187 (2.3%)	108/4212 (2.6%)	Hazard ratio 0.86 (0.65, 1.13)	0.28

Improved symptoms and quality of life

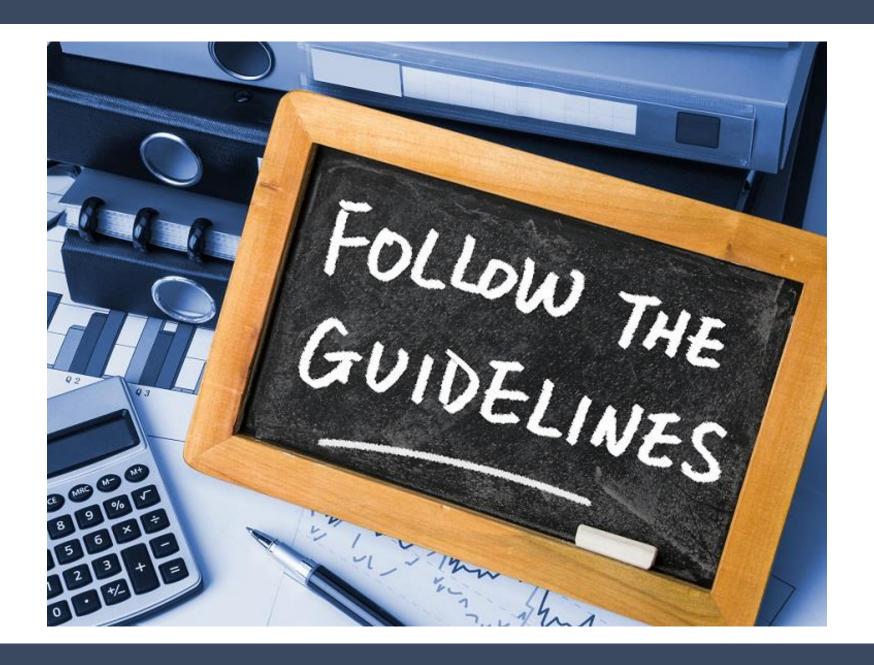

WITHIN 30 DAYS OF BEING DISCHARGED

25.3%

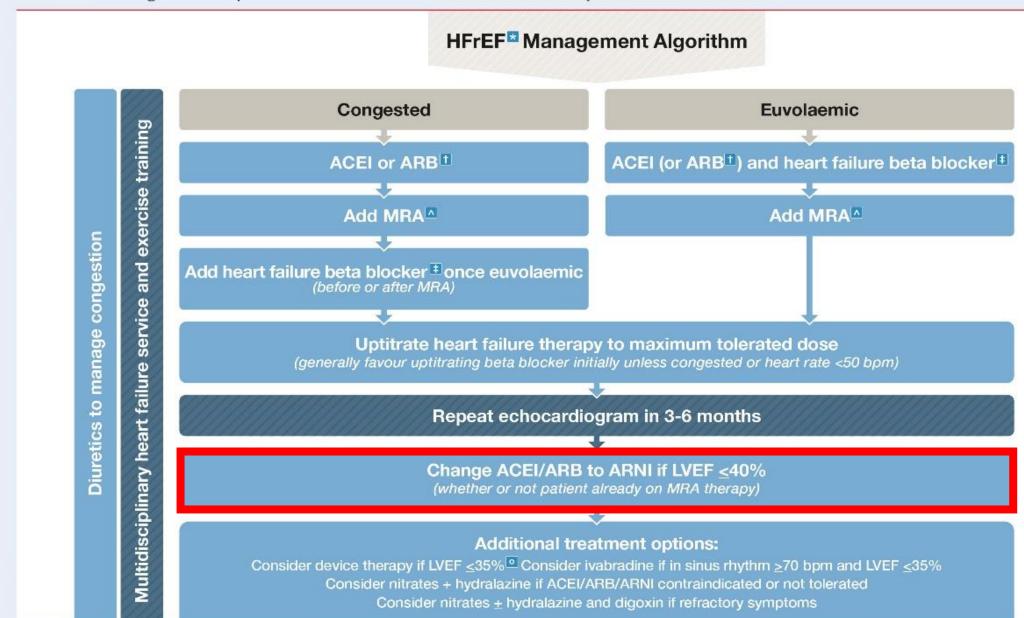
PAILENIS WITH
HEART FAILURE
WILL BE
READMITTED
TO HOSPITAL


Burden of Heart Failure Costs

The cost of heart failure is driven by hospitalisation


Total cost > GBP 1 billion (1% of annual NHS budget)

ARNI- Heart failure hospitalisation


Figure 2 Effect of sacubitril/valsartan on the rate of heart failure (HF) hospitalisations as a time to first event analysis and as a recurrent event analysis of total hospitalisations for.²⁶

Jhund PS, McMurray JJV; The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan Heart 2016;102:1342-1347.

2018 CSANZ / Heart Foundation Australian Guidelines

Management of patients with heart failure with reduced ejection fraction

Pharmacological management (HF with EF ≤35-40%)

Recommendation	GRADE strength of recommendation	GRADE quality of evidence
An angiotensin receptor blocker (ARB) is recommended in patients with HFrEF associated with an LVEF less than or equal to 40% if an ACE inhibitor is contraindicated or not tolerated, to decrease the combined endpoint of cardiovascular mortality and HF	Strong	Moderate
An angiotensin receptor neprilysin inhibitor (ARNI) is recommended as a replacement for an ACE inhibitor (with at least a 36-hour washout window) or an ARB in patients with HFrEF associated with an LVEF of less than or equal to 40% despite receiving maximally tolerated or target doses of an ACE inhibitor (or ARB) and a beta-blocker (unless contraindicated), with or without an MRA, to decrease mortality and decrease hospitalisation. ²	Strong	High
Ivabradine should be considered in patients with HFrEF associated with an LVEF of less than or equal to 35% and with a sinus rate of 70 bpm and above, despite receiving maximally tolerated or target doses of an ACE inhibitor (or ARB) and a beta-blocker (unless contraindicated), with or without an MRA, to decrease the combined endpoint of cardiovascular mortality and HF hospitalisation. ³	Strong	High

Case 1: Switching to an ARNI

Case 1: 63yo HFrEF- ischaemic

- CAGS 4 years ago
- HTN
- Gout

Meds:

Carvedilol 12.5mg bd Ramipril 10mg/d Spironolactone 12.5mg d aspirin 100mg/d allopurinol 300mg/d frusemide 40mg bd

Case 1- The switch

- Cease ACE-I
- Wait 36 hours
- Commence sacubitril/valsartan 24/26mg bd

Watch for increased diuresis

Advise about hypotension

Case 1: Up titrate- every 2 -4 weeks?

- Aim for BP no < 100mmHg
- Sacubitril/valsartan 49/51mg bd
- Likely to reduce diuretic need-
- Scope to increase spironolactone

Aim for maximum dose sacubitril/valsartan 97/103mg bd Aim- discontinue loop diuretics

Issues to discuss

- Managing hypotension
- Echo requirements
- Using BNP or NT-Pro BNP levels
- Renal dysfunction
- Should patient have an optimal MRA before starting ARNI?

Sacubitril/Valsartan: What to Do in Case of Hypotension?

- Treatment must not be initiated unless SBP is ≥ 100 mmHg
 - Cases of symptomatic hypotension have been reported
 - Especially in patients ≥ 65 years old, patients with renal disease and patients with low SBP
 - When initiating therapy or during dose titration with sacubitril/valsartan, blood pressure should be monitored routinely
- Dose reduction, if systolic BP < 100 mmHg*
- Dose reduction of other antihypertensives (if present)
- Look for over-diuresis and correct it

How Is Sacubitril/Valsartan Used in **Patients With Renal Insufficiency?**

- Normal dosing scheme if eGFR > 30ml/min
- eGFR < 30ml/min There is limited clinical experience; start with lower dose of 24/26 mg twice daily and consult prescribing information for additional details
- Reduce dose if renal function worsens during treatment (drop in eGFR by > 10ml/min)
- Careful in patients with renal artery stenosis (close follow-up; check for increase in creatinine / BUN)

Renal dysfunction can be very volume dependent- NT-pro BNP valuable clinical

Sacubitril/Valsartan: What to Do in Case of Hyperkalemia?

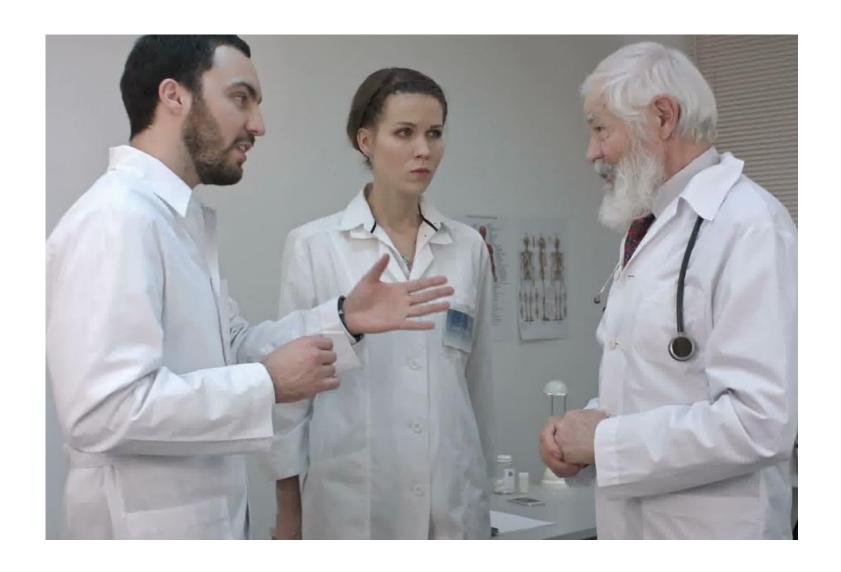
- Treatment should not be initiated if the serum potassium level is > 5.4 mmol/l
- Monitoring of serum potassium is recommended especially in patients with:
 - Renal impairment
 - Diabetes mellitus
 - On mineralocorticoid antagonists
- Adjust concomitant medication
- If patients experience clinically significant hyperkalemia adjustment of concomitant medicinal products, or temporary down-titration or discontinuation is recommended
- Stop sacubitril/valsartan if serum potassium level is > 5.4 mmol/l

Do Patients Need a Repeat Echocardiogram Before Starting Sacubitril/Valsartan?

Uptitrate heart failure therapy to maximum tolerated dose

(generally favour uptitrating beta blocker initially unless congested or heart rate <50 bpm)

Repeat echocardiogram in 3-6 months


Change ACEi/ARB to ARNI if LVEF <40%

(whether or not patient already on MRA therapy)

- 1. If a patient has improved on ACE/ARB + Beta-blocker +/- MRA and you think that their LVEF has improved to > 40%, then repeat echo
- 2. If a patient is on ACE/ARB + Beta-blocker +/- MRA and they are still symptomatic, then *two options* could be taken:
 - a) repeat the echo if you think that something else has occurred, eg worsening valvular regurgitation, pericardial effusion, new wall motion abnormality

Or

b) change the ACE/ARB to ARNI in the knowledge that this will improve the patient's survival, symptoms, left ventricular function and reduce heart failure hospitalisations

Discussion....

Beyond PARADIGM-HF

A/Prof Gautam Vaddadi

Does Sac/Val work at low dose?

- Post hoc analysis of PARADIGHM-HF
- 43% (Enalapril) and 42% (Sac/Val) reduced dose during the study

European Journal of Heart Failure (2016) **18**, 1228–1234 doi:10.1002/ejhf.580

RESEARCH ARTICLE

Efficacy of sacubitril/valsartan vs. enalapril at lower than target doses in heart failure with reduced ejection fraction: the PARADIGM-HF trial

Dose reduction is associated with higher rates of CV death and HF hospitalization

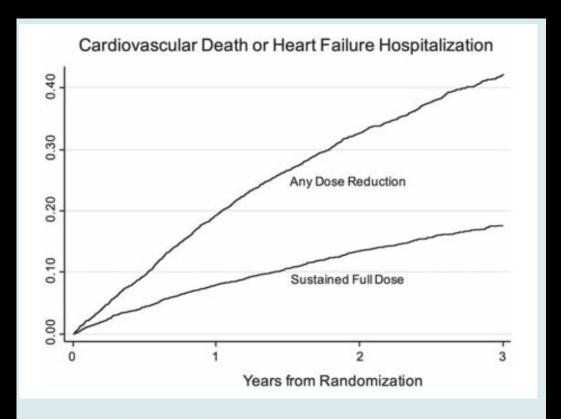
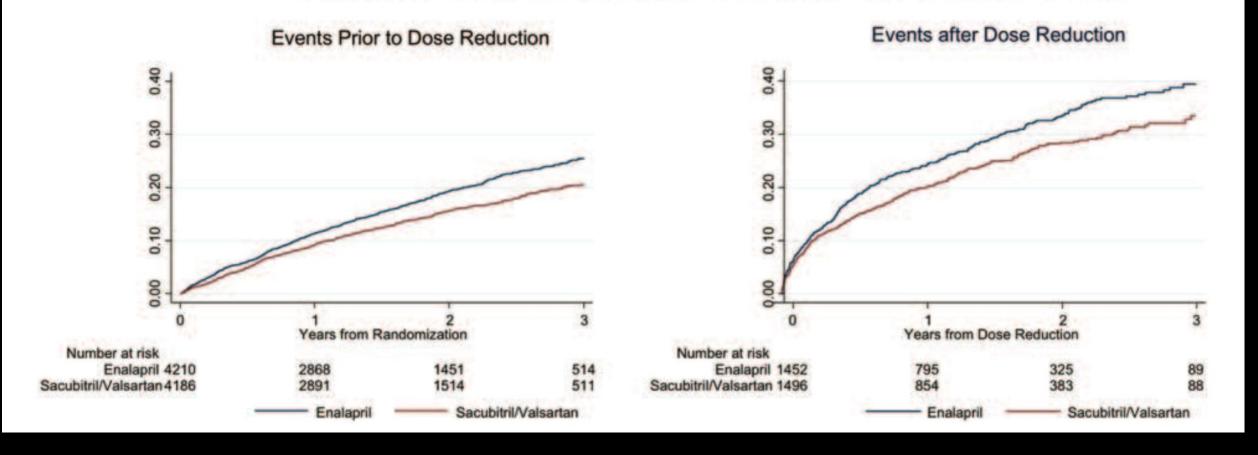



Figure 1 Kaplan-Meier curves showing primary outcome events by dose reduction status. Participants with a dose reduction had a higher risk of the primary event compared with those who remained on full study medication doses.

Sac/Val better than Enalapril in dose reduced patients- CV death and HF hospitlisation

Cardiovascular Death or Heart Failure Hospitalization by Dose Reduction Status

PIONEER –HF: Sac/Val in acute decompensated HF- 8 week trial

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Angiotensin–Neprilysin Inhibition in Acute Decompensated Heart Failure

Eric J. Velazquez, M.D., David A. Morrow, M.D., M.P.H.,
Adam D. DeVore, M.D., M.H.S., Carol I. Duffy, D.O., Andrew P. Ambrosy, M.D.,
Kevin McCague, M.A., Ricardo Rocha, M.D., and Eugene Braunwald, M.D.,
for the PIONEER-HF Investigators*

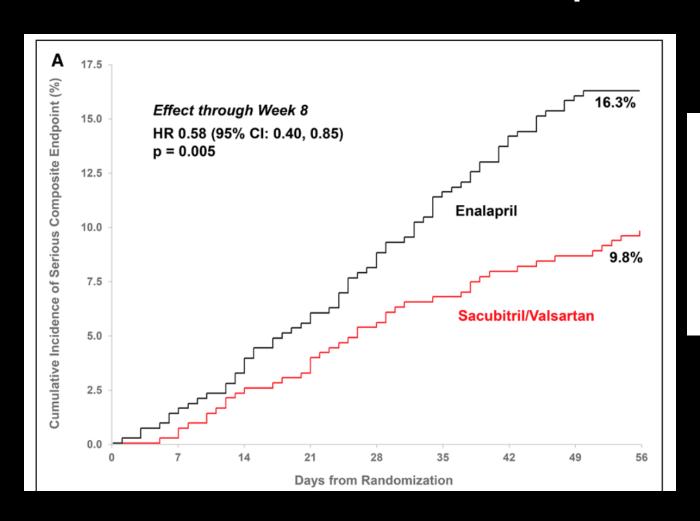
PIONEER-HF: key points of study design

- N=440 in each arm
- 65%- prior heart failure
- Admitted for ADHF- randomized after haemodynamic stabilization

- Sac/Val vs Enalapril
- MRA use was low at 10%

Figure 2. Change in the NT-proBNP Concentration.

The time-averaged reduction in the N-terminal pro—B-type natriuretic peptide (NT-proBNP) concentration was significantly greater in the sacubitril—valsartan group than in the enalapril group; the ratio of the geometric mean of values obtained at weeks 4 and 8 to the baseline value was 0.53 in the sacubitril—valsartan group as compared with 0.75 in the enalapril group (percent change, –46.7% vs. –25.3%; ratio of change with sacubitril—valsartan vs. enalapril, 0.71; 95% CI, 0.63 to 0.81; P<0.001).

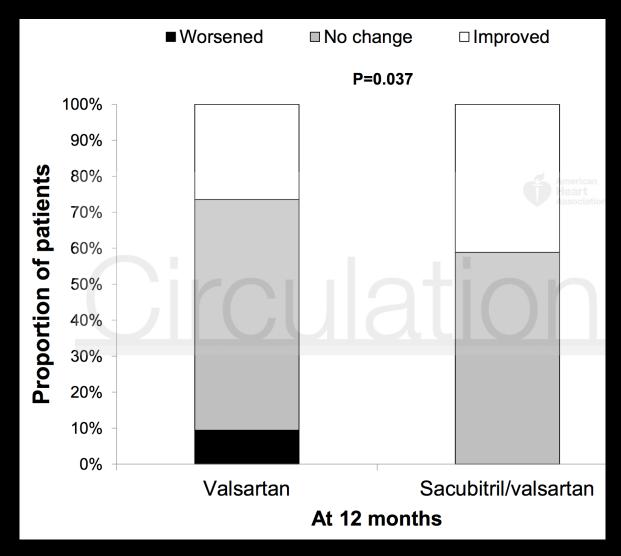

End point of the trial was reduction in NT-proBNP

PIONEER-HF: Safety

No difference in the following

- Worsening renal function
- Symptomatic hypotension
- Hyperkalaemia
- Angioedema

PIONEER-HF: Sac/Val better than Enalapril for CV death and HF hospitalization



Circulation

RESEARCH LETTER

Clinical Outcomes in Patients With Acute Decompensated Heart Failure Randomly Assigned to Sacubitril/Valsartan or Enalapril in the PIONEER-HF Trial

Functional Mitral Regurgitation Improves with Sacubitril/Valsartan

118 patients randomised to valsartan or sac/val for "significant" functional MR

90%- NYHA 2

EF- 25-50%

Angiotensin Receptor Neprilysin Inhibitor for Functional Mitral Regurgitation

PRIME Study

Duk-Hyun Kang ⊡, Sung-Ji Park, Sung-Hee Shin, Geu-Ru Hong, Sahmin Lee, Min-Seok Kim, Sung-Cheol Yun, Jong-Min Song, Seung-Woo Park, Jae-Joong Kim

Originally published 12 Mar 2019 | https://doi.org/10.1161/CIRCULATIONAHA.118.037077 | Circulation. 2018:139:1354–1365

Case 1: with diabetes...His HbA1c is 8%

- Metformin 1g bd
- BP 105/70mmHg. Hr 65 sinus
- Euvolemic
- Mild-moderate CKD (eGFR 50ml/min)

What's the plan?

Heart failure reduced EF

Ischaemic

Sacubitril/valsartan 97/103mg bd

Carvedilol 25mg bd

Frusemide 40mg d

Aspirin, statin

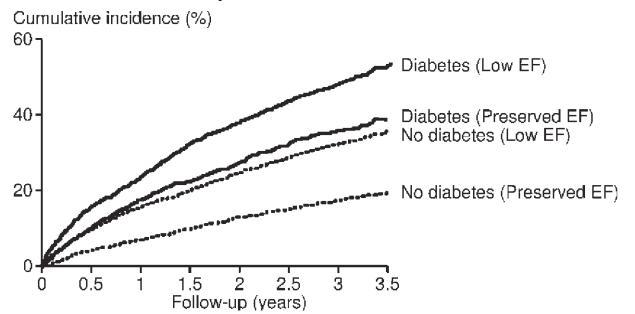
Spironolactone 25mg/d

European Heart Journal (2008) 29, 1377–1385 doi:10.1093/eurheartj/ehn153

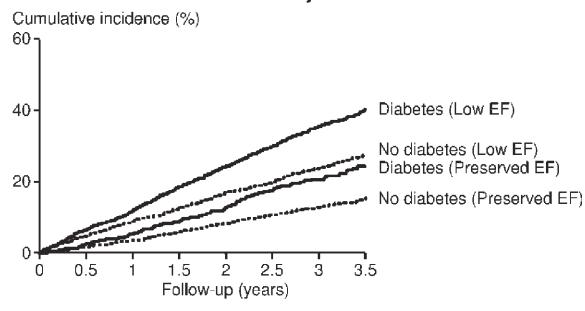
Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure

An analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme

Michael R. MacDonald¹, Mark C. Petrie¹, Fumi Varyani², Jan Östergren³, Eric L. Michelson⁴, James B. Young⁵, Scott D. Solomon⁶, Christopher B. Granger⁷, Karl Swedberg⁸, Salim Yusuf⁹, Marc A. Pfeffer⁶, John JV. McMurray^{2*}, and for the CHARM Investigators


low and preserved ejection fraction heart failure An analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme

Michael R. MacDonald¹, Mark C. Petrie¹, Fumi Varvani², Jan Östergren³. Eric L. Michelson⁴, James B. Young⁶, Scott D. Solomon⁶, Christopher B. Granger⁷ Karl Swedberg⁸, Salim Yusuf⁹, Marc A. Pfeffer⁸, John J.V. McMurray²⁴, and for the


Impact of diabetes on outcomes in patients with

hospitalization rates and all cause death

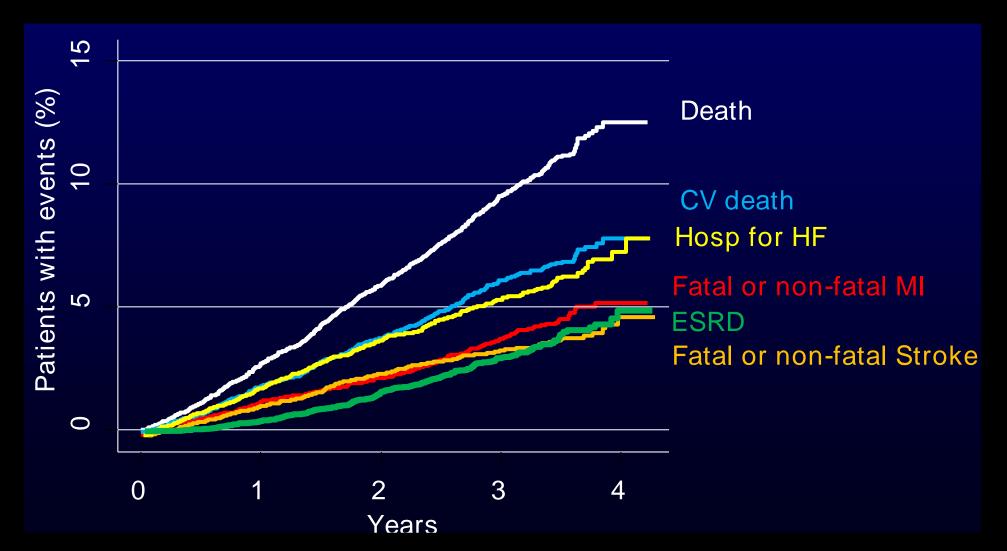
CV death or hospitalization due to HF

All-cause mortality

Glucose lowering drugs and HF- A new era?

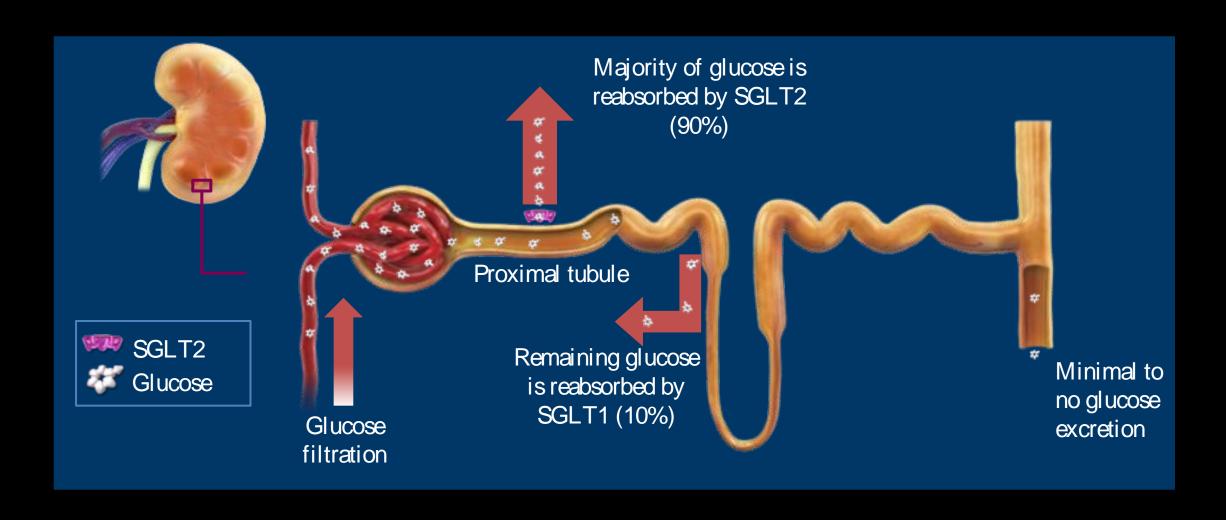
Lower the HbA1c

Impact of Intensive Glucose-Lowering Therapy in DM: Summary of Major RCTs

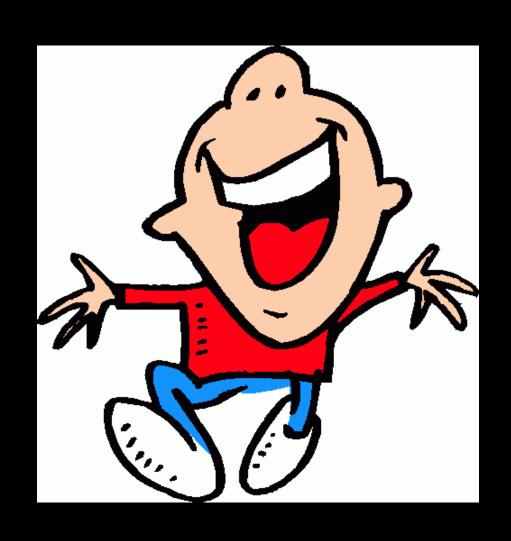

Study	Microvasc	CVD	Mortality
UKPDS33 (7.0 vs. 7.9%)	V	←→	←→
DCCT/ EDIC* (7.2 vs. 9.1%)	V	<->	<->
ACCORD (6.4% vs. 7.5%)	V	(+)	1
ADVANCE (6.3% vs. 7.0%)	V	←→	←→
VADT (6.9% vs. 8.4%)	V	(+)	←→

Kendall DM, Bergenstal RM. ©International Diabetes Center 2009, 2015 UKPDS Group. *Lancet* 1998;352:854; Holman RR. *NEJM* 2008;359:1577; DCCT Group. *NEJM* 1993;329;977; Nathan DM. *NEJM* 2005;353:2643. Gerstein HC. *NEJM* 2008;358:2545; Patel A. *NEJM* 2008;358:2560; Duckworth W. *NEJM* 2009;360:129. (*erratum*:361:1024); DCCT Group. JAMA 2015:313:45

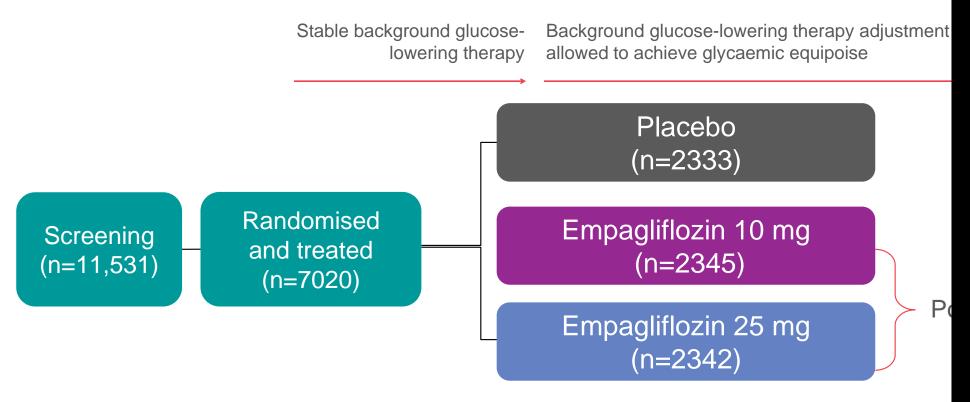
Heart failure not primary endpoint in any diabetic drug trial....


CV Outcome Trials by drug class								
Agent	Trial	Additional factors	N	CV Death in 1º	MI/ACS in 1°	Stroke in 1°	HF in 1°	
Saxagliptin	SAVOR-TIMI 53	CVD and/or RFs, A1C ≥6.5%	16,496	~	~	~	×	
Sitagliptin	TECOS	Pre-existing CVD, A1C 6.5-8%	14,671	~	✓	~	×	
Linagliptin	CAROLINA	CVD or end-organ damage or RFs A1C 6.5-8.5%	6,000	✓	~	~	×	
Alogliptin	EXAMINE	ACS, A1C 6.5-11%	5,380	~	~	~	×	
MK-3102	MK-3102-018 AM5	Pre-existing CVD	4,202	✓	~	~	×	
Liraglutide	LEADER	CVD risk or age/RFs, A1C ≥7%,	9,340	~	~	~	×	
Lixisenatide	ELIXA	ACS, A1C 5.5-11%	6,068	✓	~	~	×	
Dulaglutide QW	REWIND	High CV risk, A1C ≤9.5%	9,622	~	~	~	×	
Exenatide QW	EXSCEL	A1C 6.5-10% and CVD	14,000	✓	~	~	×	
Semaglutide	SUSTAIN	Pre-existing CVD	3,297	✓	~	~	×	
Canagliflozin	CANVAS	High CV risk, A1C 7-10.5%	4,411	✓	~	>	×	
Dapagliflozin	DECLARE-TIMI 58	High CV risk	17,150	~	~	>	×	
Empagliflozin	C-SCADE 8	Pre-existing CV	7,097	~	~	>	×	
Aleglitazar	ALEPREVENT	CVD + T2D or glucose abnormality	19,000	~	~	>	×	
	ALECARDIO	ACS + T2D	7,226	~	~	>	×	
Insulin degludec	Not known	Criteria not known	7,637	V	~	✓	×	
All trials			151,597	V	~	V	ZERO	

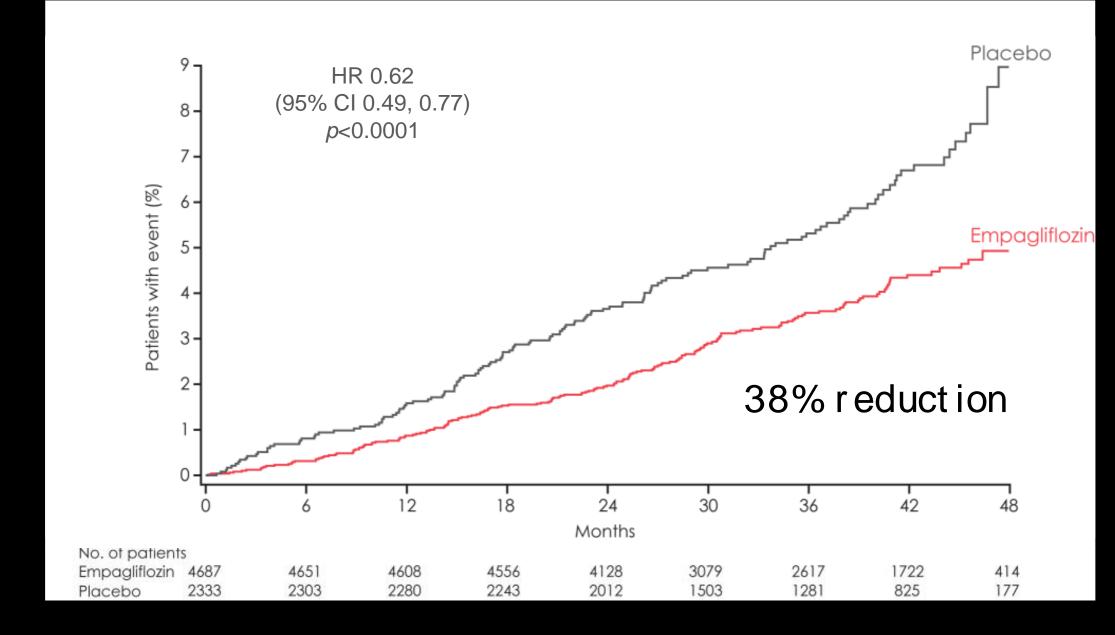
Heart failure is the top non-fatal event in diabetic trials

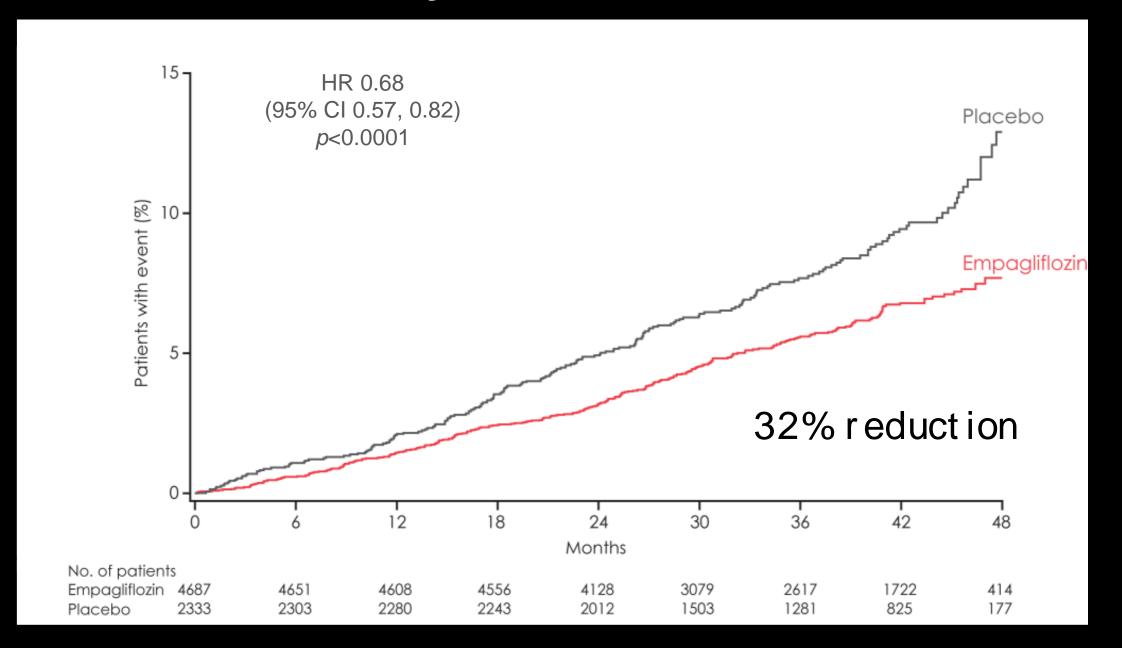


M Pfeffer, 2017 HFA meeting Paris Data from NEJM 2012- Trial of direct renin inhibitor in T2DM

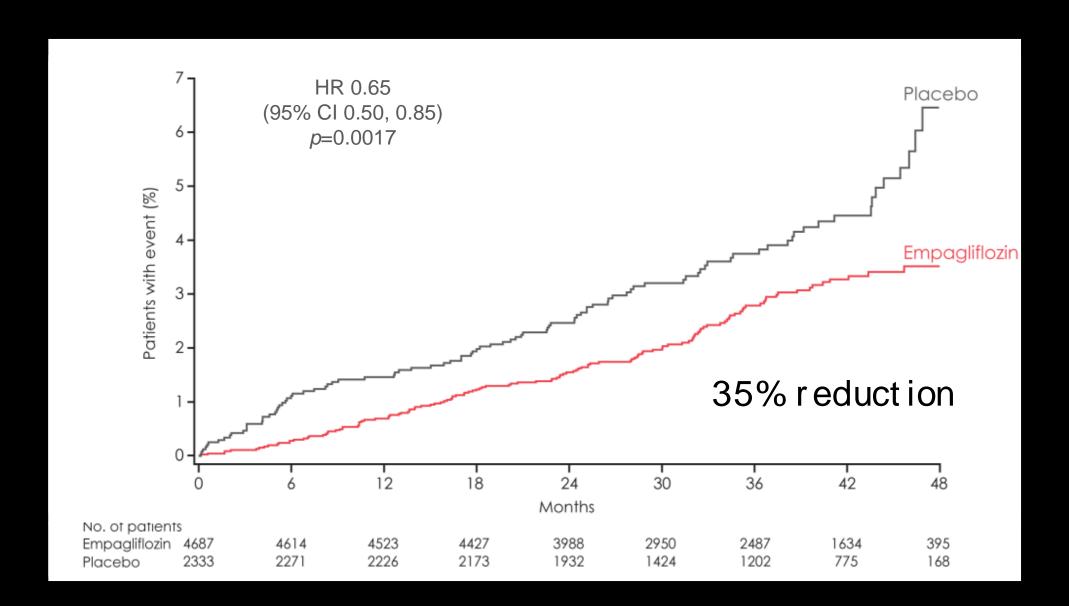

SGLT-2 inhibition: Focus on EMPA REG CV outcome study

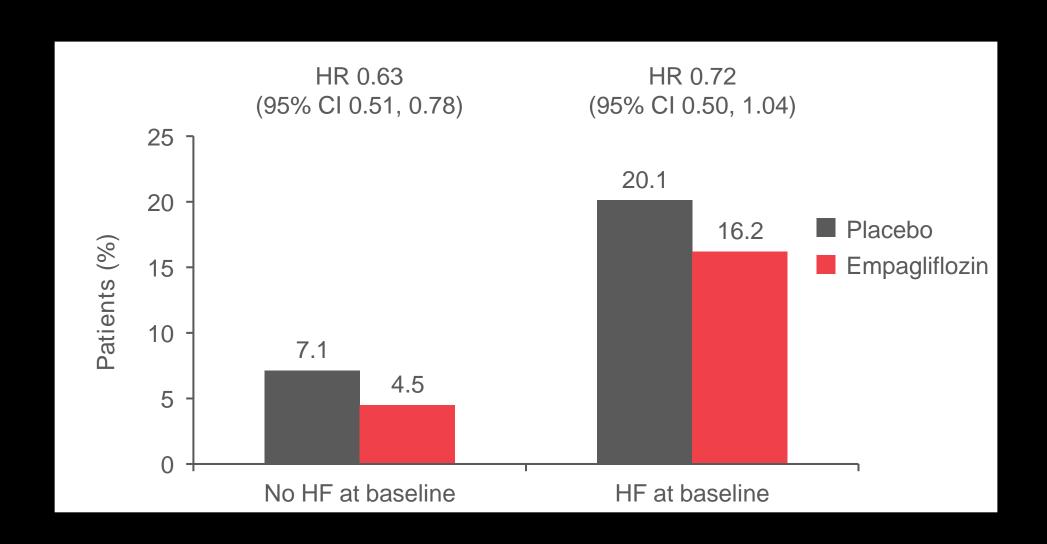
Empaglifozin: WOW!!!


EMPA REGOUTCOME: Trial design


- Study medication was given in addition to standard of care
 - Glucose-lowering therapy was to remain unchanged for first 12 weeks
- Treatment assignment double-blinded
- The trial was to continue until at least 691 patients experienced an adjudicated primary outcome event

 Zinman B et al. N Engl J Med 2015;doi:10.1056/NEJMoa1504720


CV Death


All Cause mortality

HF hospitalisation

HF hospitalisation and CV death with or without HF at baseline

Case 1: with diabetes...His HbA1c is 8%

- Metformin 1g bd
- BP 105/70mmHg. Hr 65 sinus
- Euvolemic
- Mild-moderate CKD (eGFR 50ml/min)

What's the plan?

Heart failure reduced EF

Ischaemic

Sacubitril/valsartan 97/103mg bd Carvedilol 25mg bd

Frusemide 40mg d

Aspirin, statin

Spironolactone 25mg/d

Let's chat....

PRESCRIPTION MEDICINE. Entresto® 24mg/26mg, 49mg/51mg, 97mg/103mg (sacubitril/valsartan) film coated tablets. Consult full Data Sheet before prescribing, available from www.medsafe.govt.nz. Entresto is fully funded under Special Authority Criteria, please refer to www.pharmac.health.nz.

Indication: Treatment of chronic heart failure (NYHA Class II-IV) with reduced ejection fraction. Contraindications: Hypersensitivity to sacubitril, valsartan, or excipients. ACE inhibitors (ACEi). Do not administer within 36 hours of switching from or to an ACEi. Angioedema related to previous ACEi or ARB therapy. Use with aliskiren in Type 2 diabetes (T2D). Severe hepatic impairment, biliary cirrhosis and cholestasis. Pregnancy.

Precautions: Caution switching from ACEi or while co-administering with aliskiren in T2D (see Contraindications). Should not be co-administered with an ARB. May cause symptomatic hypotension, especially in those ≥75 years old, renal disease and systolic BP <112 mmHg or patients with an activated RAAS. Initiation not recommended in systolic BP <100 mmHg. Monitor BP when initiating therapy or during dose titration. If hypotension occurs, dose adjustment of diuretics, antihypertensives, and consider treatment of other causes of hypotension. If hypotension persists, consider dose reduction or temporary interruption. Correct sodium and/or volume depletion before starting treatment. May be associated with decreased renal function; assess renal function before initiation and during treatment. Monitor serum creatinine, and down-titrate or interrupt if a clinically significant decrease in renal function develops. May increase urea and creatinine levels in patients with renal artery stenosis. Not recommended with end-stage renal disease. Should not be initiated and consider discontinuation if the serum potassium level is >5.4 mmol/L. Monitor serum potassium periodically and treat appropriately, especially in patients with risk factors, dosage reduction or interruption may be required. Caution with medications known to raise potassium levels. If clinically significant hyperkalaemia occurs, consider adjusting the dose of concomitant medications. If angioedema occurs, immediately discontinue, and provide appropriate therapy and monitoring until complete and sustained resolution; black patients or patients with a prior history of angioedema may be at higher risk. Caution in NYHA Class IV or in moderate hepatic impairment or with AST/ALT >2X ULN. Use in lactation not recommended. Use contraception during treatment and for 1 week after last dose.

Interactions: Aliskiren in T2D, ACEI/ARB. Caution with statins, sildenafil, lithium, potassium-sparing diuretics including mineralocorticoid antagonists, potassium supplements, or salt substitutes containing potassium, NSAIDs including selective COX-2 Inhibitors, frusemide, inhibitors of OATP1B1/B3, OAT3 or MPR2 and metformin. Dosage: Target dose one tablet of 97 mg/103 mg twice daily. Starting dose one tablet of 97 mg/103 mg twice daily. Starting dose one tablet of 24 mg/26 mg taken twice daily recommended for ACEI/ARB naive patients, those with severe renal impairment, moderate hepatic impairment, and in those ≥ 75 years old. Double every 2-4 weeks to the target dose.

Adverse effects: Very common (≥ 10%): Hyperkalaemia, hypotension, renal impairment. Common (1 to 10%): Cough, dizziness, renal failure, diarrhoea, hypokalaemia, fatigue, headache, syncope, nausea, asthenia, orthostatic hypotension, vertigo. Uncommon (0.1 to 1%): Angioedema, dizziness postural. Unknown: Hypersensitivity (including rash, pruritus, and anaphylaxis).

Novartis New Zealand Limited, Auckland. Ph 0800 652 422 ® Registered Trademark