



Medicine







**Never Stand Still** 

### **Cognitive Testing for the Workplace**

Psychiatry

#### Professor Henry Brodaty Centre for Healthy Brain Ageing (CHeBA) Dementia Centre for Research Collaboration University of New South Wales h.brodaty@unsw.edu.au



### Why do cognitive screening?

• Routine eg after certain age

 eg pilots, train drivers, doctors under new APHRA guide judges?, politicians?





### Importance of collateral history

- Pivotal in clinical practice
- More difficult in workplace
- Reports from work





# Should we diagnose before symptoms appear?

- By screening people at risk?
- By measuring biomarkers?





# **Role of cognitive screening**

- 50-80% of dementia are undiagnosed
- At least 50% of mild & moderate dementia cases are missed by physicians, improves for moderately advanced dementia
- Target of testing should be those with risk factors (age, FH, genotype) & when there are symptoms
  - Not just those who present to medical centres for other reasons.. Not universal screening

Ashford et al. *Alzheimer's & Dementia.* 2006; 2:76-85





### Screening: the case for

- Reversible cause
- Start anti-AD Rx earlier
- Relief to patient
- Relief to family
- Legal: enduring POA/ guardianship

- Better Mx comorbid  $\Delta$
- Life decisions
- Driving
- Work
- >attention to life-style





### Screening: the case against

- No Rxx proven
- Lifestyle/ legal should be for all
- False positives
- False negatives

- Cost
- Alarm pt/ family
- No RCT that earlier Dx improves outcome





# Major objectives of a good screening program

- 1. Detection of disease at a stage when treatment can be *more effective* than it would be after pt develops Sg & Sx... ??
- 2. Identification of risk factors to prevent or lessen the disease by modifying the risk factors ... Possibly but do not need to screen





# **Criteria for screening test**

- 1. Disease should constitute a significant public health problem ...  $\sqrt[4]{\sqrt{4}}$
- 2. Have readily available treatment with potential for cure that increases with early detection ... **x**
- 3. Test must be capable of detecting a high proportion of disease in preclinical state ...  $?\sqrt{}$





# Criteria for screening test

- 4. Be safe to administer ...  $\sqrt{}$
- 5. Be reasonable in cost ...  $\sqrt{}$
- 6. Lead to demonstrated better health outcomes ?
- 7. Be widely available, as must the interventions that follow a positive result ...  $?\sqrt{}$





# Good screening tools have...

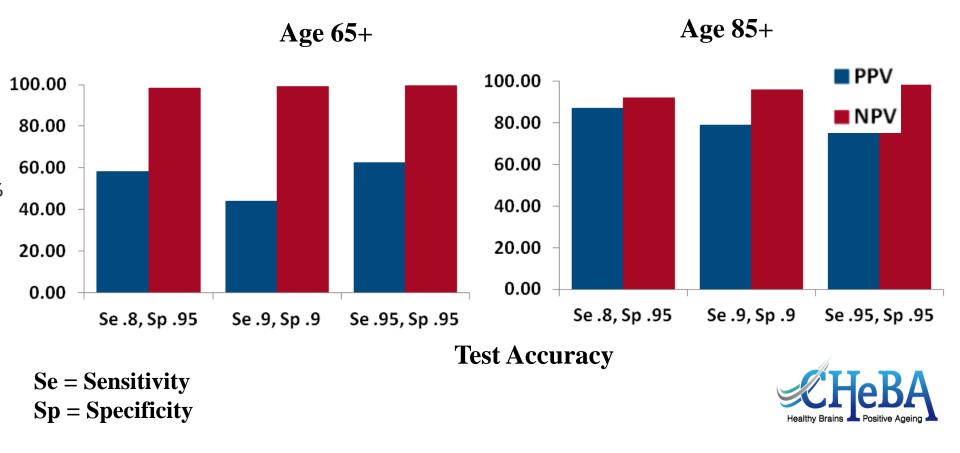
- High sensitivity
  = a/ a + c
- High specificity
  = d/ b + d
- PPV = a/ a + b
- NPV = d/ c + d

|          | Disease<br>present | Disease<br>absent        |                               |
|----------|--------------------|--------------------------|-------------------------------|
| Test     | a = true           | b = false                | Total                         |
| positive | positive           | positive                 | test +ve                      |
| Test     | c = false          | d = true                 | Total                         |
| negative | negative           | negative                 | test -ve                      |
|          | Total<br>disease   | Total<br>non-<br>disease | Total<br>populat <sup>n</sup> |





### **Effect of prevalence**


- As prevalence rises
  - PPV increases
  - PNV decreases
- High prevalence populations
  - Age: ≥75 10%; ≥ 80 = 20%+; ≥ 90 = 30%+
  - Age + hospital:  $\geq$  70  $\geq$  40%<sup>1</sup>
  - RACF: 50 70%
  - Family history, ApoE4 etc

Sampson EL, Brit J Psychiatry, 2009: 191:61-66





#### At what age should screening commence?





### If screen positive....

- This is not diagnosis of dementia
- False positives poor cognitive performance 2° to sensory impairment, education, language, developmental disability
- Positive screen ≠ dementia, eg acute illness, depression, medication
- Desirable to have test with high sensitivity followed by second stage assessment

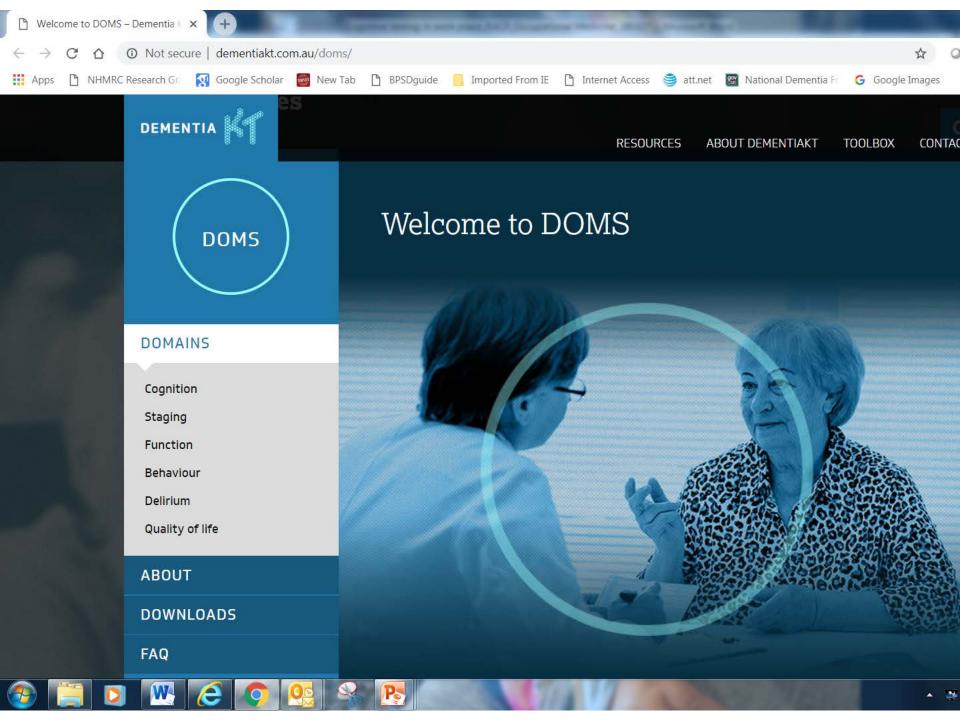




# Screening instruments

Brief

- MMSE
- sMMSE
- MOCA
- AMTS
- GPCOG
- Memory Impairment
  Scale
- Minicog


- PAS-CDS
- RUDAS
- KICA
- Longer
- ACE-R
- 3MS
- Cued recall
- ADAS-COG





**DOMS** website

http://dementiakt.com.au/doms/





### How to do cognitive testing

- Seek permission, explain purpose
- Seating, chairs, lighting, no distractions
- Correct vision, hearing if possible
- Interpreter if needed
- Appropriate test





#### **Cognitive Ax without testing**

#### At interview

- Appearance, non-verbal
- History
  - dates, specificity
- Speech
- Vocabulary
- Anticipation
- Humour





# Limitations of testing

#### Person

- Variable performance 
  Educa
- Motivation
- Psychological
- Physical limitations
- Medications
- Comorbidity

Tester

#### Test

- e Education bias
  - Ceiling effects
  - Floor effects
  - Domains not tested

#### Context

- Practice effect
- Language





# **Challenging cases**

- Intellectual disability
- Mental illness eg Sz, depression
- Physical illness
- Malingering
- Is it delirium? Dementia? Delirium + dementia?
- MCI vs dementia, especially when no informant
- Near centenarians and centenarians





# Driving

- Moderately severe and severe dementia stop driving
- Early- moderate ??
- Poor correlation with cognitive testing
- Driving assessment required









#### Understanding Neuropsychological Assessment

**Never Stand Still** 

**Dr Nicole Kochan** 

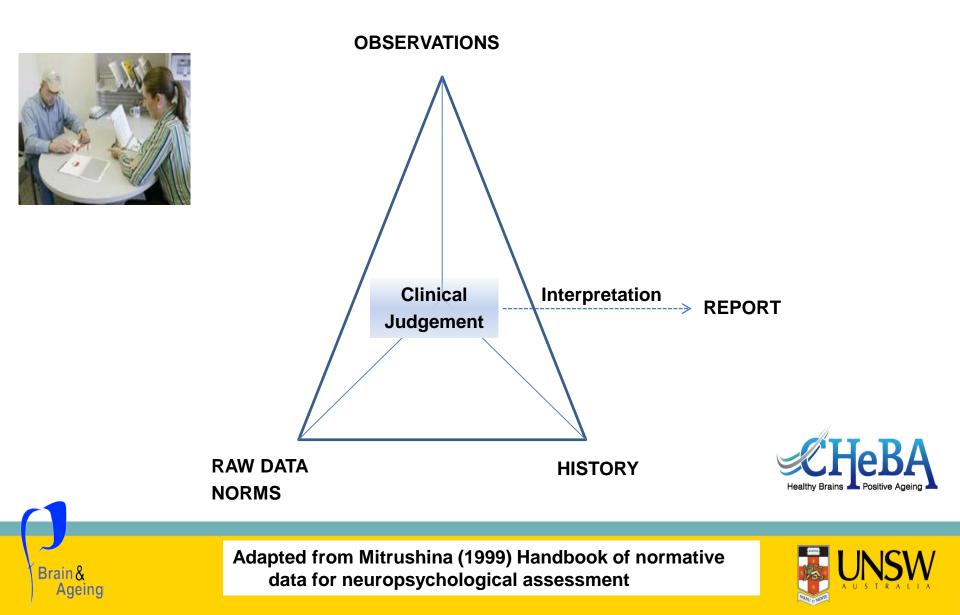


Brain & Ageing

# **Outline of neuropsychology**

- Overview of assessment
  process
- Role of NP Ax in dementia & MCI
- What do we test? Cognitive domains & processes
- Limitations of NP Ax

Brain & Ageing




#### **Dr Nicole Kochan**





#### What is neuropsychological assessment?



#### Role of neuropsychological assessment in MCI & dementia



- Detect cognitive impairment/ decline - sensitive to subtle impairment in mild neurocognitive disorders – MCI
- Differential diagnosis
- Monitor cognitive change
- Prognosis
- Predicting functional ability







# **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood







#### **Estimating premorbid ability**

National Adult Reading Test (NART)

psalm courteous drachm gauche demesne Wechsler Test of Adult Reading (WTAR)

gnat aesthetic treatise hyperbole insouciant







## **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood

Brain & Ageing

Social awareness





#### **Tests of Attention and Working Memory**

- Digits forward and backward
- 'Mental control'/series
- e.g. months backward, serial 7s





#### **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood







# $\begin{array}{c} \text{Coding} \\ \hline \textbf{Digit Symbol} \\ \hline \textbf{J} \\ \hline \textbf{J} \\ \hline \textbf{J} \\ \hline \textbf{A} \\ \hline \textbf{H} \\ \hline \textbf{H} \\ \hline \textbf{Coding} \hline \hline \textbf{Coding} \\ \hline \textbf{Coding} \hline \hline \textbf{Coding} \\ \hline \textbf{Coding} \hline \hline \textbf{Cod$

. .

| Den | 10 |   | Sam | ple |   |   |   |   |   |   |   |   |   |   |   |   |    |
|-----|----|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 6   | 8  | 3 | 9   | 5   | 4 | 1 | 7 | 2 | 1 | 4 | 8 | 2 | 7 | 6 | 9 | 3 | 5  |
| 8   | 3  | 1 | 9   | 2   | 5 | 6 | 4 | 3 | 7 | 2 | 9 | 8 | 1 | 4 | 7 | 6 | 5  |
| 9   | 1  | 2 | 4   | 7   | 2 | 5 | 6 | 9 | 5 | 8 | 6 | 4 | 3 | 1 | 7 | 8 | 3  |
| 1   | 3  | 9 | 6   | 3   | 9 | 7 | 5 | 1 | 4 | 2 | 8 | 7 | 2 | 8 | 5 | 6 | 4  |
| 7   | 6  | 4 | 1   | 3   | 2 | 8 | 1 | 7 | 9 | 2 | 5 | 3 | 4 | 8 | 6 | 5 | 9  |
| 8   | 1  | 9 | 5   | 1   | 4 | 2 | 6 | 9 | 8 | 7 | 3 | 5 | 6 | 4 | 7 | 2 | 3  |
| 3   | 6  | 8 | 9   | 1   | 8 | 4 | 7 | 5 | 2 | 9 | 6 | 7 | 1 | 5 | 2 | 3 | 4  |
| 6   | 4  | 1 | 9   | 5   | 7 | 3 | 6 | 8 | 3 | 2 | 7 | 5 | 8 | 4 | 2 | 9 | 1  |
| 0   | 4  | - | 9   | 5   | / | 3 | 0 | 0 | 3 | 2 | 1 | Э | 0 | 4 |   | 2 | 29 |

.





Brain & Ageing

#### **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood







#### **Verbal Memory Tests**

- Story recall: "Logical Memory"
  - 25 elements; Immediate & Delayed recall
- Word list learning:

#### Rey Auditory Verbal Learning Test (RAVLT)

- List A: 15 words (5 repeated presentations)
- List B: 15 words (interference list)
- Immediate recall List A
- Delayed recall List A (20-30' later)
- Recognition words

Brain & Ageing

drum curtain bell coffee school parent moon garden hat farmer nose turkey colour house river

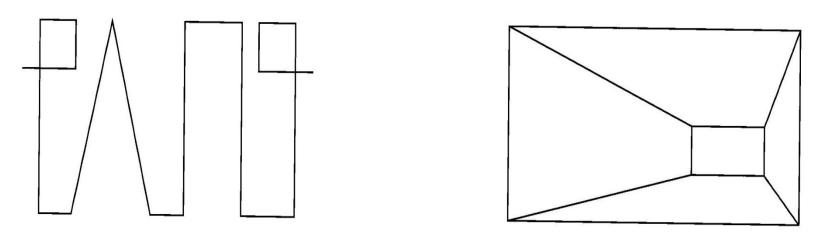




#### **Visual Memory Tests**

- Simple Designs: Visual Reproduction
- less complex








#### **Visual Memory Tests**

- Simple Designs: Visual Reproduction
- more complex

Brain & Ageing



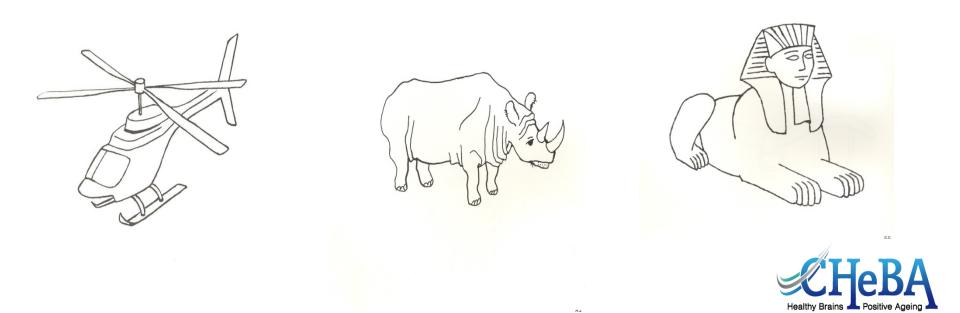




## **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood








#### Language Tests

Brain & Ageing

Confrontation Naming: Boston Naming Test





#### Language Tests

- Fluency measures: Semantic or category fluency
- Animals, Fruits, Vegetables, Boy's names, Countries





#### Language Tests

- Fluency measures:
- Controlled Oral Word Association Test/ Letter fluency (FAS)
- "Test Experience"





## **Verbal fluency additional measures**

 Rule breaks and repetitions provide information about attentional control, self-monitoring and perseverative thinking







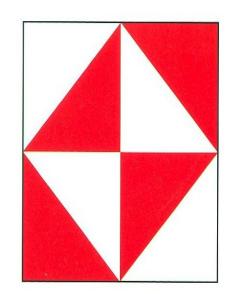
## **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood







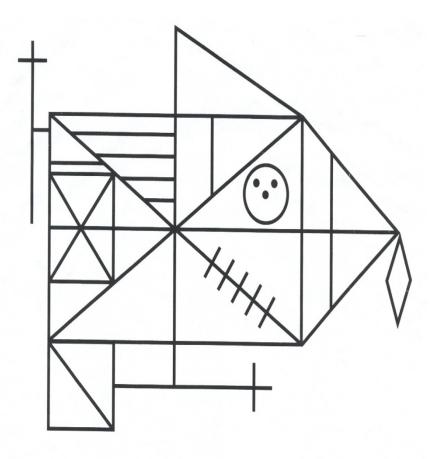








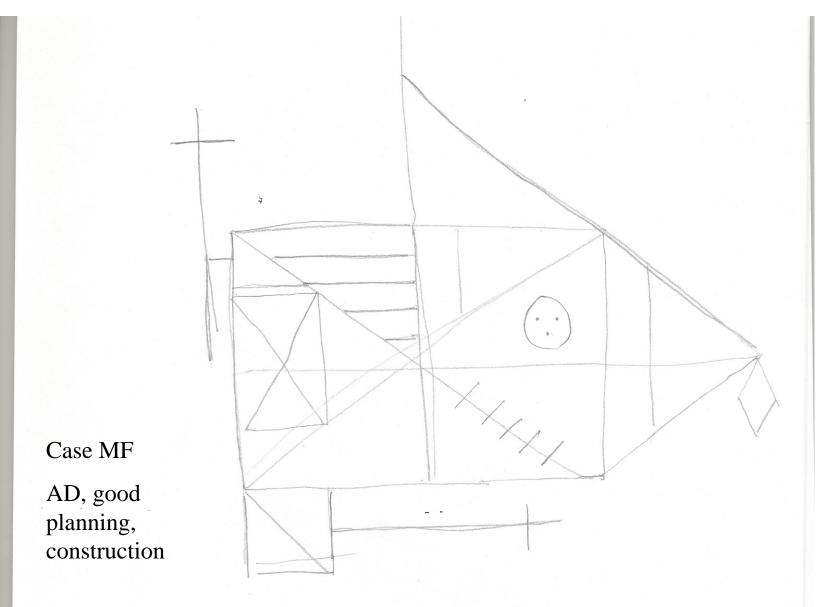


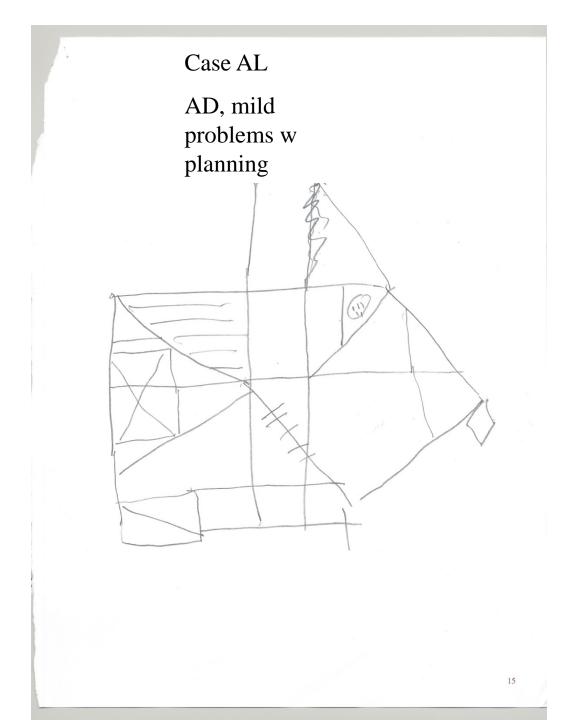






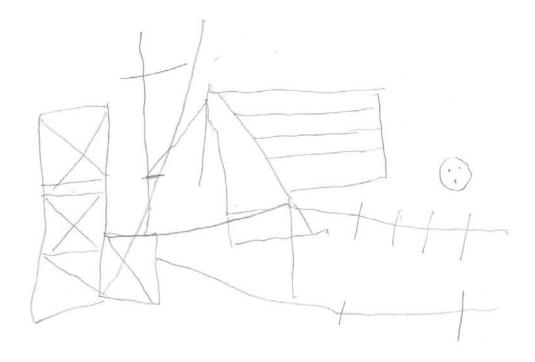


#### **Rey Complex Figure**



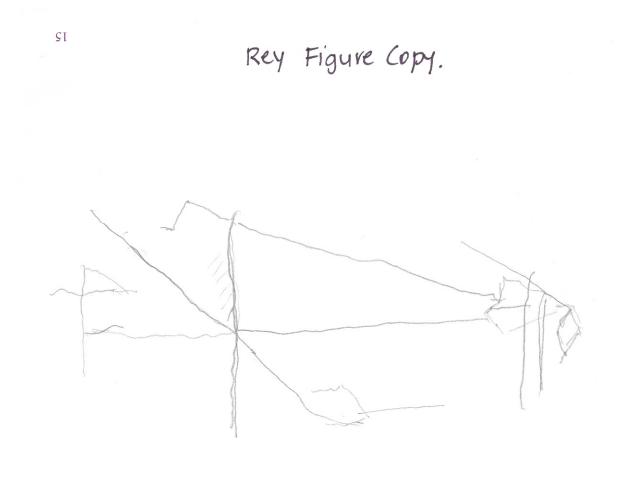







: 2011년 - 2012년 - 2012년 1월 12일 - 2012년 1월 12일 - 2012년 - 2012년






vascular dementia, severe constructional difficulties







Case RB DLB, severe spatial & construction difficulties

## **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function -reasoning, problem-solving, concept formation, mental flexibility, planning
- Mood







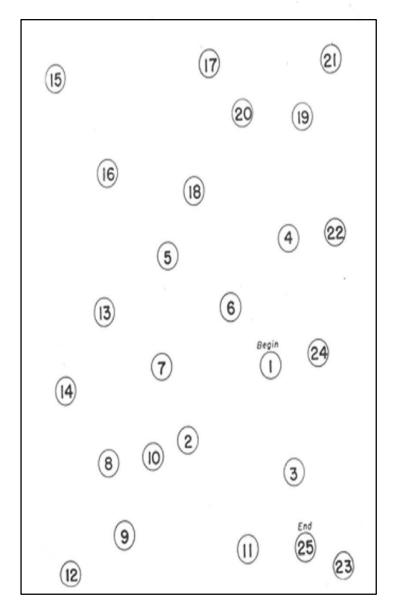
- Verbal abstract thinking 'Similarities'
- In what way are an orange and a banana alike?
- In what way are work and play alike?
- In what way are praise and punishment alike?



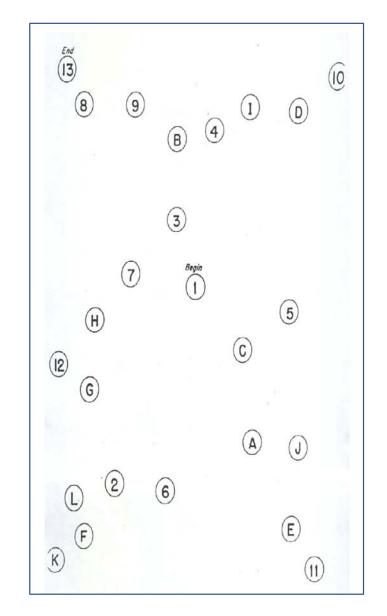




## Scoring similarities – work & play


- 2 points:
- basic human activities, activities valued by society, daily activities we do
- 1 point:
- ways to spend your time, part of life, can get enjoyment from them
- 0 point:
- Keep you out of trouble, play is fun but work is serious, they're opposites








**Trail Making Test A** 



#### **Trail Making Test B**



## **Cognitive domains**

- Premorbid ability
- Attention and working memory
- Processing speed
- Learning and Memory
- Language
- Visuo-spatial ability
- Executive function
- Mood







## How normal distinguished from abnormal? Normative data

- Test data collected on a group of healthy individuals
- Comparing performance of an individual to a normative sample provides info about their relative standing in the group
- Validity of npsych results depends on match between individual being tested & normative sample, in regards to sociodemographic characteristics







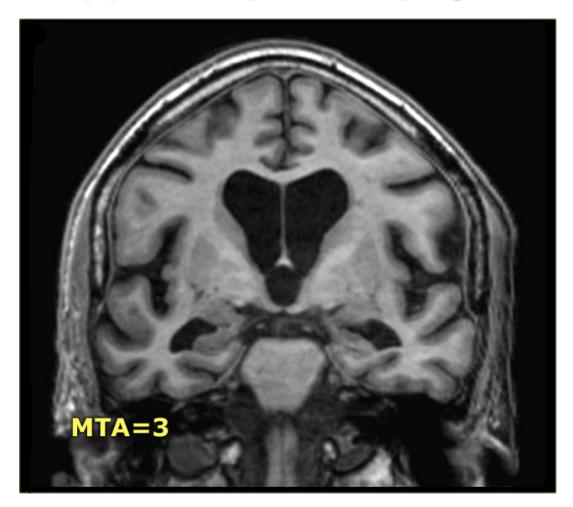


## **Limitations of Neuropsychological Ax**

- Problem of base rates
- Frequency of low test scores in the normative sample on a particular test battery
- 1 or 2 impairments on a large test battery may lead to misdiagnosis
- neuropsych scores cannot be interpreted in isolation



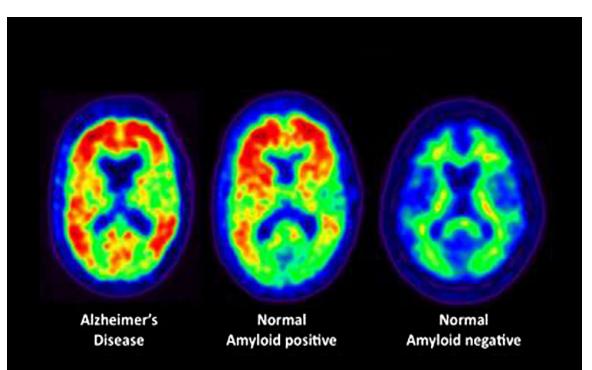



## Biomarkers

- CT & MRI Scans
- ΑpoE ε4
- CSF  $\downarrow A\beta$ ,  $\uparrow$ tau and P-tau
- PET Amyloid imaging
- PET Tau imaging
- Dopamine Transporter Imaging SPECT (ligand not available in Australia)






## **Hippocampal atrophy in Alzheimer's**



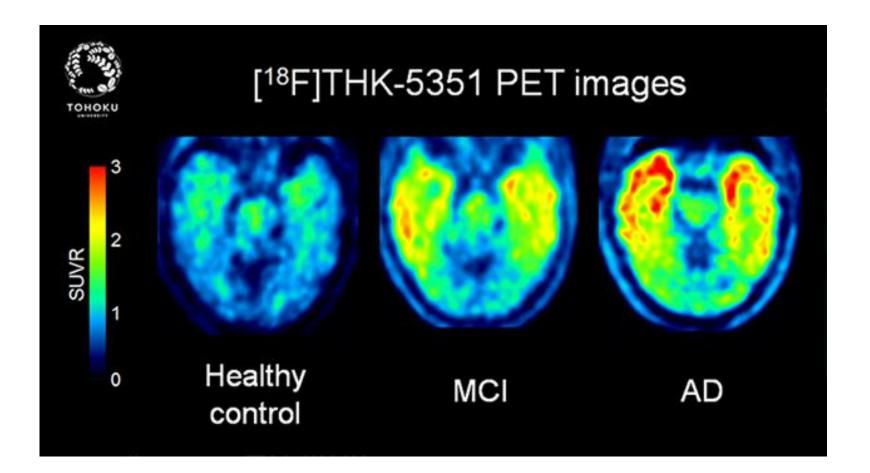




# PET amyloid imaging: normal vs AD

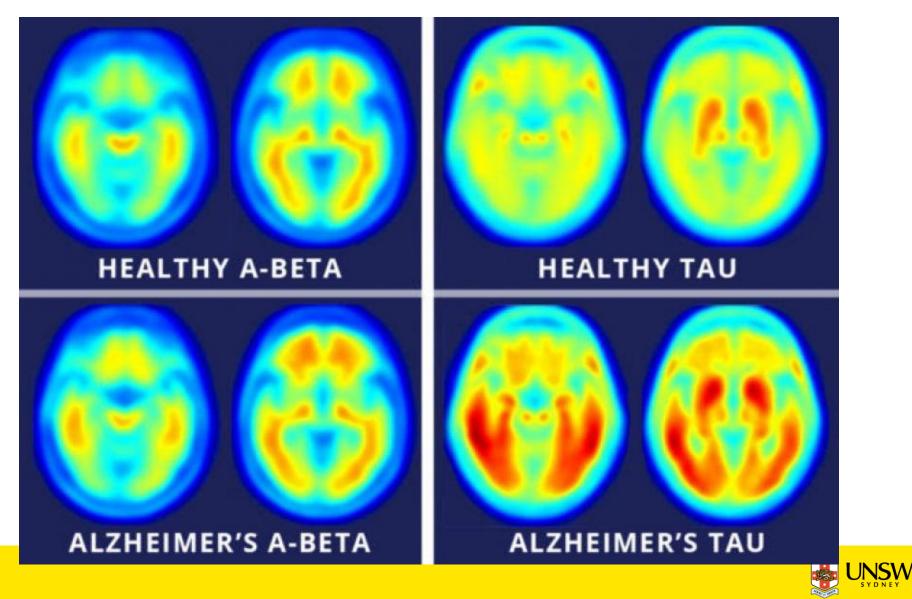


- 35% persons60+ amyloid+
- Amyloid+ →
  ↑ risk clinical
  progression
- Will all amyloid+ develop AD?
- When??

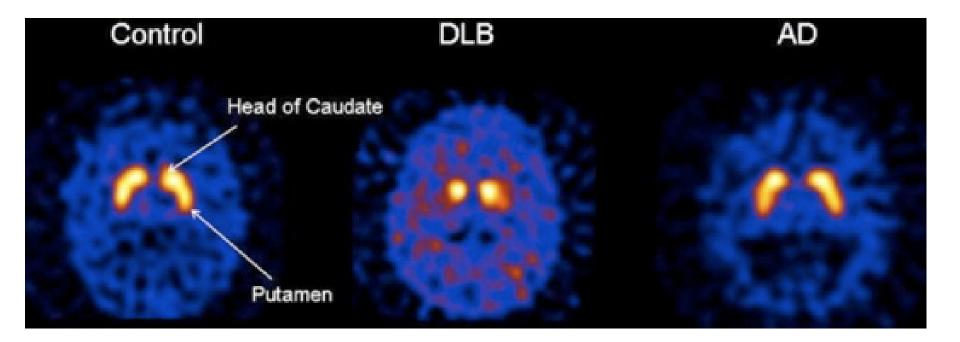

## Hotter colours = more amyloid








# Tau imaging






## Aβ & tau imaging



## **DAT Scan for LBD**





## Conclusions

- Assessing cognition is more than an MMSE
- History, history, history
- Physical and mental state
- Consider medications, context
- Brief cognitive testing is just a first step
- Neuropsychological testing is long procedure, stressful and expensive
- Testing cognition can have work, insurance and personal consequences



# Thank you

### CHeBA www.cheba.unsw.edu.au

## Dementia Outcomes Measurement Suite http://dementiakt.com.au/doms/

DCRC <u>www.dementiaresearch.org.au</u>

