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‘Big data’ 

• Volume  
– Large scale of data (terabytes or petabytes)  

• Variety  
– Variable format of data (structured, semi structured and unstructured) 

• Velocity 
– Speed at which data are produced, processed, and analysed  

• Veracity  
– Quality, relevance, predictive value and meaning of data  

• Value 
– Worth of information to stakeholders and decision makers 



Big data transforming health care: ‘P4 Medicine’ 

• Predictive 
• Preventive 
• Personalized 
• Participatory 

Flores M, Glusman G, Brogaard 
K, Price ND, Hood L. P4 
medicine: how systems 
medicine will transform the 
healthcare sector and society. 
Future Medicine 
2013;10(6):565-576. 

Generating new 
knowledge 

Empowering 
patients 



Generating new knowledge 

• RCTs and quasi-experimental studies have been the foundation of 
evidence-based medicine 
– Cost, logistics and ethics preclude using these methods to answer many 

(most?) clinical questions 
• ‘Big data’ offer the potential to create a new observational evidence base  

– Administrative data 
– Electronic health records 
– ‘New’ data sources 

• Traditional research methods will not suffice!  
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Holy 
Grail! 

The rise of ‘data science’ 



Using administrative data: 
Indigenous Health Outcomes Patient Evaluation (IHOPE) 

Where are the gaps? 

In health 
outcomes 

In treatment and 
access 

What is the contribution of: 
Area, SES, Remoteness? 
Hospitals, Health system? 



IHOPE data 
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Research focus 

• Acute myocardial infarction 
• Road traffic injuries 
• Unintentional injuries in children 
• Cataract procedures 
• Otitis media procedures in children 
• Potentially preventable hospitalisations 
• Breast conserving surgery 
• …… 



Multilevel modelling 

• Models data that are clustered 
– e.g. live in same neighbourhood, go to the same hospital 
– more similar than those in other areas or hospitals because of shared 

exposure (often unmeasured) 
– can impact on standard errors and parameter estimates if not taken into 

account 
 

• Particular issue for Aboriginal health research 
– geographic distribution of Aboriginal people in NSW 
– ~40% of Aboriginal people live in major cities compared with ~70% of 

non-Aboriginal people 
 



AMI: ‘High incidence, high disparity’ areas 
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Randall DA, Jorm LR, Lujic S, et al. Exploring disparities in acute myocardial infarction events between Aboriginal 
and non-Aboriginal Australians: roles of age, gender, geography and area-level disadvantage. Health and Place 
2014; 28: 58-66. 



AMI: disparity in revascularisation rates 
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An Aboriginal person in NSW has a 37% lower hazard of 
revascularisation within 30 days of AMI than a non-Aboriginal 
person of the same age, sex, year of admission and AMI type 

Hazard ratio 

Randall DA, Jorm LR, Lujic S, et al. Disparities in revascularization rates after acute myocardial infarction between 
Aboriginal and non-Aboriginal people in Australia. Circulation, 2013 Feb 19;127(7):811-9.  
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Role of variation between hospitals? 

Revascularisation: ‘unpacking’ the gap 
 

Hazard ratio 

Randall DA, Jorm LR, Lujic S, et al. Disparities in revascularization rates after acute myocardial infarction between 
Aboriginal and non-Aboriginal people in Australia. Circulation, 2013 Feb 19;127(7):811-9.  
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Revascularisation: ‘unpacking’ the gap 
 

Randall DA, Jorm LR, Lujic S, et al. Disparities in revascularization rates after acute myocardial infarction between 
Aboriginal and non-Aboriginal people in Australia. Circulation, 2013 Feb 19;127(7):811-9.  
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Once we compare within hospitals, the disparity reduces - 
an Aboriginal person has a 18% lower hazard of revascularisation 

than a non-Aboriginal person of the same age, sex, year of 
admission, AMI type, admitted to the same hospital 

Hazard ratio 
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Revascularisation: ‘unpacking’ the gap 
 

Randall DA, Jorm LR, Lujic S, et al. Disparities in revascularization rates after acute myocardial infarction between 
Aboriginal and non-Aboriginal people in Australia. Circulation, 2013 Feb 19;127(7):811-9.  
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Comorbidity burden on admission 

Aboriginal people 
have higher rates of 
these conditions 
recorded in hospital 
data than non-
Aboriginal people 
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Revascularisation: ‘unpacking’ the gap 
 

Randall DA, Jorm LR, Lujic S, et al. Disparities in revascularization rates after acute myocardial infarction between 
Aboriginal and non-Aboriginal people in Australia. Circulation, 2013 Feb 19;127(7):811-9.  
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Once we adjust for comorbidities the gap is further reduced 

Hazard ratio 
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Revascularisation: ‘unpacking’ the gap 
 

Randall DA, Jorm LR, Lujic S, et al. Disparities in revascularization rates after acute myocardial infarction between 
Aboriginal and non-Aboriginal people in Australia. Circulation, 2013 Feb 19;127(7):811-9.  
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After adjusting for substance use and private health insurance, 
there is no longer a significant difference  

Hazard ratio 



IHOPE AMI: Summary 

Cardiac procedures 
Aboriginal people 
admitted with AMI less 
likely to get 
revascularisation 

Related to hospital of 
admission and higher rate 
of comorbidities such as 
diabetes and renal failure 

Mortality after AMI 
No difference in 30-day 
mortality after AMI, but 
Aboriginal people more 
likely to die within 1 
year 

Importance of follow-up 
care and managing 
multimorbidity. Possible 
link to lower procedure 
rates? 

Age at first heart 
attack 

Importance of prevention 
and management of early 
heart disease symptoms 

Aboriginal people on 
average 12 years 
younger at first AMI 
Greater disparity in 
young and women  
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Using EHRs 

Jensen PB1, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. 
Nat Rev Genet. 2012 May 2;13(6):395-405. 



Analysing EHR data 

Jensen PB1, Jensen LJ, Brunak S. Mining 
electronic health records: towards better 
research applications and clinical care. Nat Rev 
Genet. 2012 May 2;13(6):395-405. 



Machine learning 

• Data-driven approaches that discover statistical patterns in multivariate data 
sets 

• Starting point is a data set of training examples 
• Supervised training methods derives a model from a set of ‘labelled’ examples 

– e.g. naive Bayes, artificial neural networks, support vector machines, 
random forests 

• Unsupervised methods take an unlabelled data set and find groups sharing 
similar features 
– e.g. self-organizing maps and clustering algorithms 

• Data from EHR systems are challenging  
– have many dimensions but are sparse 

o many features describe patients but most of them are typically absent 
for any given patient  

– heterogeneous, encompassing quantitative data, categorical data and text 
– subject to random errors and systematic biases 

 



We developed a phenotype library that uses both structured and unstructured 
data from the EMR to represent patients for real-time clinical decision support.... 
Learning with anchors presents a method of efficiently learning statistically driven 
phenotypes with minimal manual intervention 

Halpern Y, Horng S, Choi Y, Sontag D. Electronic medical record phenotyping using the anchor and learn 
framework. JAMIA 22 April 2016. DOI  http://dx.doi.org/10.1093/jamia/ocw011 



Natural language processing 

Splits text into individual sentences 

Splits text into individual words (with rules for handling e.g. dates) 

Normalizes e.g. case, inflection or spelling variants 

Assigns part-of-speech tags to each word (e.g. NN for noun) 

Identifies syntactic units, most importantly noun phrases (NPs) 

Maps NPs to controlled vocabularies, accounting for negating (e.g. 'no’, 'never’) 

Jensen PB1, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat 
Rev Genet. 2012 May 2;13(6):395-405. 



Date of download:  5/8/2016 Copyright © 2016 American Medical 
Association. All rights reserved. 

From: Automated Identification of Postoperative Complications Within an Electronic Medical Record Using 
Natural Language Processing 

JAMA. 2011;306(8):848-855. doi:10.1001/jama.2011.1204 

Among patients undergoing inpatient surgical procedures at VA medical 
centers, natural language processing analysis of EMRs to identify 
postoperative complications had higher sensitivity and lower specificity 
compared with patient safety indicators based on discharge coding 



https://www.newscientist.com/a
rticle/2086454-revealed-
google-ai-has-access-to-huge-
haul-of-nhs-patient-data 

“The agreement gives 
DeepMind access to a wide 
range of healthcare data on the 
1.6 million patients who pass 
through three London hospitals 
run by the Royal Free NHS Trust 
– Barnet, Chase Farm and the 
Royal Free – each year. The 
agreement also includes access 
to patient data from the last five 
years.” 
 
 



Using ‘new’ data sources: Twitter 



Using ‘new’ data sources: Twitter 



Using ‘new’ data sources: facebook 
Figure 3. Prevalence of activity-related interests and obesity in the USA. 

Chunara R, Bouton L, Ayers JW, Brownstein JS (2013) Assessing the Online Social Environment for Surveillance of 
Obesity Prevalence. PLoS ONE 8(4): e61373. doi:10.1371/journal.pone.0061373 



http://timchester.com/wp-content/uploads/2013/08/QS-spread.jpg 

Empowering patients 



http://totalrecallboo
k.com/ 



http://www.article-
3.com/mapping-the-quantifie
self-99287 

























Big data transforming health care: ‘P4 Medicine’ 

• Predictive 
• Preventive 
• Personalized 
• Participatory 
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