

Is Occupation as Air Transport Pilot a Stroke Risk?

A Case-Control Study

Why this question?

Why?

Ischaemic Stroke

4% increased stroke risk for every 5 years of night shift in nurses

Ischaemic Stroke

Meta-analysis (n=559,252): HR 1.15 (95% CI, 1.07-1.24) for short sleep

Ischaemic Stroke

Brown et al. Rotating Night Shift Work and the Risk of Ischemic Stroke. American Journal of Epidemiology. 2009.

Vyas et al. Shift work and vascular events: systematic review and meta-analysis. British Medical Journal. 2012.

Leng Y, et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology 2015.

Aim of Study

Stroke Cases

Air Transport Pilot

VS

Unexposed

Control Cases

Air Transport Pilot

VS

Unexposed

Hypothesis:

Odds of long haul Air Transport Pilot occupation exposure versus non-exposed in stroke cases different to control cases? ($\alpha = 0.05$)

Method

Ischaemic Stroke Cases & Controls

All Australian Civilian Aviation Pilots and Air Traffic Controllers

Stroke Cases

Control Cases

Ischaemic Stroke or TIA

First Event

Diagnosis by Neurologist

Random Selection

No matching or restriction

4:1

The Exposed

"Air Transport Pilot Occupied in Medium to Long Haul Work"

Air Transport Pilot Licencing

Maximum Take-Off Weight (Fixed Wing) > 15,000 kg

Flight Hours Accumulated > 5000 hours

Multicrew command

Stated Employer a Medium to Long Haul Carrier

The Unexposed

- ☐ Private/recreational pilots (Class 2)
- ☐ Commercial pilots (Class 1, non-ATP)
- ☐ Air traffic controllers (Class 3)

Limited exposure to shift & night work and trans-meridian travel compared to Air Transport Pilots?

Confounder Management

Complete data on significant* ischaemic stroke risk factors was collected for each subject

*Age, sex, *hypertension, *current smoking, *diabetes,

*other cardiac/vascular disorders, BMI.

Multivariable logistic regression modelling to adjust for confounding by these risk factors

Results?

Sampling Characteristics

Records: 1985 to 2017

Total subjects 464

18 years to 88 years age

Median age of 42 years in both groups

Mostly male (94.4%)

Raw Numbers – Occupational Exposure

Stroke = 88	Air Transport Pilot = 11 (12%)	
	Unexposed = 77 (88%)	Commercial Pilot = 14 (18%)
		Private Pilot = 59 (77%)
		Air Traffic Controller = 4 (5%)

Controls = 376	Air Transport Pilot = 24 (6%)	
	Unexposed = 352 (94%)	Commercial Pilot = 112 (32%)
		Private Pilot = 234 (66%)
		Air Traffic Controller = 6 (2%)

Explanatory Factors (Unadjusted)

Unadjusted Primary Association & Qualitative Confounder Relationships

Unad Air Transpor	Pooled Odds Ratio (Mantel-Haenzsel)	
2.09	(95% CI: 0.98, 4.46; p = 0.068)	
Age < 50	Age > 50	Age
1.46	1.52	1.51
Normal BP	BP > 140/90 or Treated BP	BP > 140/90 or Treated BP
4.00	0.78	2.70
BMI < 30	BMI > 30	BMI > 30
2.17	1.96	2.13

^{*}Comorbid cardiac and vascular disease, gender, diabetes, and smoking not amendable to stratified analysis due to small number drop out in some strata.

Primary Outcome – Air Transport Pilot Occupation

Discussion

Replicate or do better studies?

Is Occupation as Air Transport Pilot a Stroke Risk?

Yes it could be

Acknowledgements

Dr Eugen Mattes, FAFOEM

Dr Michael Drane, PMO CASA

Dr Aparna Rao, CASA ASAM

Dr Derchieh Hung, Statistician CSL

Dr Craig White, FAFOEM

Is Occupation as Air Transport Pilot a Stroke Risk?

Yes it could be

Differential selection of stroke cases wrt ATP status

SOURCE POPULATION

Air Transport Pilots who developed stroke

VS

Other Pilots / ATCs who developed stroke

Some may not apply for re-certification

Australian Government

Civil Aviation Safety Authority

"Exploratory" Factors (Unadjusted)

