Spirometry

Brigitte Borg Clinical Physiologist (Respiratory)

> Australasian Faculty of Occupational and Environmental Medicine, RACP Annual Training Meeting 2022

Declarations:

- Workplace conducts spirometry training courses.
- Co-author of textbook "Interpreting Lung Function Tests: a Step-by-Step Guide."

Objectives

- Brief review of lung function tests
- Spirometry what is it? primary parameters
- Identify standards for spirometry and interpretation
- Training requirements
- Spirometry interpretation

The Purpose of Lung Function Tests

Provide an **objective** assessment to:

- Aid diagnosis
- Response to therapy
- Assessment of disease progression
- Suitability for surgery
- Epidemiological surveys
- Assessment of claims for disability
- Capability for physical work and rehabilitation
- Establishment of safe conditions in industry (respiratory hazards)

Factors that affect the Lungs Function

Ventilation

- Lung size
- Airway size
- Respiratory muscle function
- Respiratory system compliance (chest wall & lungs)
- Respiratory control centres

Gas Exchange

- Provision of air to alveoli
- Alveolar membrane integrity (area, thickness)
- Pulmonary capillary blood flow and supply

Common Lung Function tests:

Test	Physiology measured
Spirometry	Ventilation
Static lung volumes	Lung volumes and capacities, ventilation
CO gas transfer (DLCO or TLCO)	Gas exchange
Maximal respiratory pressures	Global respiratory muscle function
Arterial blood gases	Gas exchange
Bronchial provocation test	Ventilation
Cardiopulmonary Exercise test	Gas Exchange and Ventilation

Lung Function Laboratory, The Alfred

- Movement of air moving in and out of the lungs
- Performed under relaxed or forced conditions

Lung Volumes and Capacities

Cannot measure TLC, FRC, RV with spirometry

Volume-time & Flow-volume Curves

Primary Parameters of Spirometry

- FEV₁(L) Forced expiratory volume in 1 second
- (F)VC (L) (Forced) vital capacity
- FEV₁/(F)VC

Spirometers: Community / occupational practice

Performing spirometry

AMERICAN THORACIC SOCIETY DOCUMENTS

Standardization of Spirometry 2019 Update

An Official American Thoracic Society and European Respiratory Society Technical Statement

 Brian L. Graham, Irene Steenbruggen, Martin R. Miller, Igor Z. Barjaktarevic, Brendan G. Cooper, Graham L. Hall, Teal S. Hallstrand, David A. Kaminsky, Kevin McCarthy, Meredith C. McCormack, Cristine E. Oropez, Margaret Rosenfeld, Sanja Stanojevic, Maureen P. Swanney[†], and Bruce R. Thompson; on behalf of the American Thoracic Society and the European Respiratory Society

This official technical statement was approved by the American Thoragic Society and the European Respiratory ety September 2019

NEW

NFW

- International standards for the performance of spirometry
- Standards discuss:
 - Equipment (spirometer) specifications
 - Quality assurance activities (equipment and test performance)
 - Performance of test
 - Description of parameters
 - Acceptability and repeatability criteria
 - Grading scales
- Separate standard for interpretation

EUROPEAN RESPIRAT RY JOUR FLAGSHIP SCIENTIFIC JOURNAL OF ERS

Early View

Task force report

ERS/ATS technical standard on interpretive strategies for routine lung function tests

Sanja Stanojevic, David A. Kaminsky, Martin Miller, Bruce Thompson, Andrea Aliverti, Igor Barjaktarevic, Brendan G. Cooper, Bruce Culver, Eric Derom, Graham L. Hall, Teal S. Hallstrand, Joerg D. Leuppi, Neil MacIntyre, Meredith McCormack, Margaret Rosenfeld, Erik R. Swenson

Please cite this article as: Stanojevic S, Kaminsky DA, Miller M, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. *Eur Respir J* 2021; in press (https://doi.org/10.1183/13993003.01499-2021).

Requirements for Valid Spirometry Results

- Properly functioning equipment
- Adequate instruction and motivation to elicit a maximal response from subject
- Ability to assess results for validity

Operator requires knowledge and skill

Table 7. Summary of Acceptability, Usability, and Repeatability Criteria for FEV₁ and FVC

	Required for	Acceptability	Required for Usability	
Acceptability and Usability Criterion	FEV1	FVC	FEV ₁	FVC
Must have BEV ≤5% of FVC or 0.100 L, whichever is greater	Yes	Yes	Yes	Yes
Must have no evidence of a faulty zero-flow setting	Yes	Yes	Yes	Yes
Must have no cough in the first second of expiration*	Yes	No	Yes	No
Must have no glottic closure in the first second of expiration*	Yes	Yes	Yes	Yes
Must have no glottic closure after 1 s of expiration	No	Yes	No	No
Must achieve one of these three EOFE indicators: 1. Expiratory plateau (<0.025 L in the last 1 s of expiration) 2. Expiratory time ≥15 s 3. FVC is within the repeatability tolerance of or is greater than the largest prior observed FVC ¹	No	Yes	No	No
Must have no evidence of obstructed mouthpiece or spirometer	Yes	Yes	No	No
Must have no evidence of a leak	Yes	Yes	No	No
If the maximal inspiration after EOFE is greater than FVC, then FIVC – FVC must be ≤0.100 L or 5% of FVC, whichever is greater [‡]	Yes	Yes	No	No

Repeatability criteria (applied to acceptable FVC and FEV1 values)

Age >6 yr: The difference between the two largest FVC values must be ≤0.150 L, and the difference between the two largest FEV₁ values must be ≤0.150 L

Age ≤6 yr: The difference between the two largest FVC values must be ≤0.100 L or 10% of the highest value, whichever is greater, and the difference between the two largest FEV₁ values must be ≤0.100 L or 10% of the highest value, whichever is greater

Definition of abbreviations: BEV = back-extrapolated volume; EOFE = end of forced expiration; FEV_{0.75} = forced expiratory volume in the first 0.75 seconds; FIVC = forced inspiratory VC.

The grading system (Table 10) will inform the interpreter if values are reported from usable maneuvers not meeting all acceptability criteria. *For children aged 6 years or younger, must have at least 0.75 seconds of expiration without glottic closure or cough for acceptable or usable

measurement of FEV_{0.75}. ¹Occurs when the patient cannot expire long enough to achieve a plateau (e.g., children with high elastic recoil or patients with restrictive lung disease) or when the patient inspires or comes off the mouthpiece before a plateau. For within maneuver acceptability, the FVC must be greater than or within the repeatability tolerance of the largest FVC observed before this maneuver within the current prebronchodilator or the current post-bronchodilator testing set. ⁺Although the performance of a maximal forced inspiration is strongly recommended, its absence does not preclude a maneuver from being judged acceptable, unless extrathoracic obstruction is specifically being investigated.

Table 10. Grading System for FEV1 and FVC (Graded Separately)

Grade	Number of Measurements	Repeatability: Age >6 yr	Repeatability: Age ≤6 yr*
A	≥3 acceptable	Within 0.150 L	Within 0.100 L*
B	2 acceptable	Within 0.150 L	Within 0.100 L*
C	≥2 acceptable	Within 0.200 L	Within 0.150 L*
D	≥2 acceptable	Within 0.250 L	Within 0.200 L*
E	≥2 acceptable	>0.250 L	>0.200 L*
	OR 1 acceptable	N/A	N/A
U	0 acceptable AND ≥1 usable	N/A	N/A
F	0 acceptable and 0 usable	N/A	N/A

Definition of abbreviation: N/A = not applicable.

The repeatability grade is determined for the set of prebronchodilator maneuvers and the set of post-bronchodilator maneuvers separately. The repeatability criteria are applied to the differences between the two largest FCV alues and the two largest FEV₁ values. Grade U indicates that only usable but not acceptable measurements were obtained. *Although some maneuvers may be acceptable or usable at grading levels lower than A, the overriding goal of the operator must be to always achieve the best possible testing quality for each patient.* Adapted from Reference 114. *Or 10% of the highest value, whichever is greater; applies for age 6 years or younger only.

POSITION STATEMENT

Spirometry training courses: Content, delivery and assessment a position statement from the Australian and New Zealand Society of Respiratory Science*

MAUREEN P. SWANNEY,¹ CHRISTOPHER A. O'DEA,² EMILY R. INGRAM,¹ LEANNE T. RODWELL³ AND BRIGITTE M. BORG⁴ for the ANZSRS Spirometry Training Course Working Group

*Respiratory Physiology Laboratory, Christchurch Hospital, Christchurch, New Zealand; ²Department of Respiratory Medicine, Princess Margaret Hospital, Perth, WA; ³Department of Respiratory and Sleep Medicine, Lady Cilento Children's Hospital, Brisbane, QLD; ⁴Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia

Respirology 2017. doi: 10.1111/resp.13133.

STANDARDS FOR SPIROMETRY TRAINING COURSES COMPANION DOCUMENT TO STANDARDS FOR THE DELIVERY OF SPIROMETRY FOR A COAL MINE WORKERS

Thoracic Society of Australia and New Zealand

ARDS FOR THE DELIVERY OF ROMETRY FOR L MINE WORKERS

July 2017

Society of Australia and New Zealand

July 2017

Interpretation

General Features of Interpretation

- 1. Assess test validity*
- 2. Assess adequacy of reference values
- 3. Determine normality or abnornation range
- 4. Classify detected abnormality
- 5. Determine severity of abnormality*
- 6. Compare to previous results
- 7. Attempt to address the clinical questi

*Cautionary statement may be required

Technical comments from the operator are really important and useful to the reporter

Grading Scale

Spirometry GLI 2012: Age range 3-95yr

LLN	5th	-1.64
ULN	95 th	+1.64

"Interpreting Lung Function Tests: A Step-by-Step Guide" ISBN 9781118405512

the rotal

Technical vs Clinical Interpretation

Technical interpretation:

- Assesses quality markers
- Pattern recognition (normal vs abnormal)
- Can be done without knowledge of clinical history Clinical interpretation:
- Includes technical interpretation
- Requires knowledge of clinical history of patient
- Attempts to addresses clinical question
- Ideally performed by referring/treating doctor

Interpretation of Ventilatory Function Spirometry Alone

"Interpreting Lung Function Tests: A Step-by-Step Guide" ISBN 9781118405512

Definitions of Ventilatory Patterns

Ventilatory Pattern	Spirometry		Static Lung Volumes
Obstruction	FEV ₁ /(F)VC < LLN		
(1)	_		
Restriction	FEV ₁ /(F)VC > LLN	AND	TLC < LLN
(1)			
Mixed Obstruction/Restriction	FEV ₁ /(F)VC < LLN	AND	TLC < LLN
(1)			
Non Specific Ventilatory Pattern	FEV ₁ /(F)VC > LLN,	AND	TLC > LLN
(2)	FVC < LLN,		
	$FEV_1 < LLN$		

1. Eur Respir J. 2005 Nov;26(5):948-68

2. Chest. 2009 Feb;135(2):419-24

Lung Volumes and Capacities

Cannot measure TLC, FRC, RV with spirometry

Gender:	Male						
Age (yr):	24	Weig	ht (kg):	63.9			
Height (cm):	162.3		Race:	Other			
Clinical Notes	: Asth	ima					
Pre Bronchodilator							
	Best	Pred	LLN	Z-score			
Spirometry							
FEV ₁ (L)	3.67	3.53	2.84	+0.33			
FVC (L)	4.34	4.09	3.35	+0.54			
FEV ₁ /FVC	0.85	0.87	0.76	-0.26			
Technical Con	nment:	Pre E	BD: FEV1	A FVC A	Post BD:		

Case 1

Post Br	onchodilator			
Best	Z-score	%Chng	9	-Pre -Post
3.93 4.42 0.89 9: F	"Baseline describe p The ter baseline	e Spirometry" i re-bronchodila ms pre-bronch e are used inte	s also us ator spiro odilator rchangea	ed to metry. and ibly.

Reference values may not se representative of this patient's ethnicity and should be used with caution. Pre-bronchodilator spirometry is within normal limits.

Gender	: Male							
Age (yr)	: 24	Weig	sht (kg):	63.9				
Height (cm)	: 162.3		Race:	Other				$\int 2c \Delta$
Clinical Note	es: Ast	hma						Case
	Pre Bro	onchodil	ator		Post Br	onchodilator		
	Best	Pred	LLN	Z-score	Best	Z-score	%Chng	11
Spirometry								7
FEV ₁ (L)	3.67	3.53	2.84	+0.33	3.93	+0.97	7.4	5
FVC (L)	4.34	4.09	3.35	+0.54	4.42	+0.72	2.0	w (1/2)
FEV ₁ /FVC	0.85	0.87	0.76	-0.26	0.89	+0.42		£ -3
Technical Co	omment:	Pre E	BD: FEV1	A FVC A	Post BD: FEV	1A FVCA		-5

Reference values may not be representative of this patient's ethnicity and should be used with caution. Baseline spirometry is within normal limits. The response to inhaled bronchodilator is not significant.

Volume (L)

55

-11

Gender:	Female		
Age (yr):	67	Weight (kg):	75.3
Height (cm):	154.8	Race:	Caucasiar
Clinical Notes :	Asthr	na for review.	

Case 4

		Pre B	ronchodi	lator	Post Bro		
	Best	Pred	LLN	Z-score	Best	Z-score	%Chng
Spirometry							
FEV ₁ (L)	1.60	2.06	1.52	-1.41	1.97	-0.29	18
FVC (L)	2.46	2.63	1.94	-0.54	2.71	+0.19	10
FEV ₁ /FVC	0.65	0.79	0.66	-1.75	0.73	-0.78	
Technical Co	mment:	Pre B	D: FEV1 A	FVC A	Post BD: FEV:	1 A FVC A	

 $FEV_1/FVC \ge LLN$ Yes

There is an obstructive ventilatory defect on baseline spirometry. The response to inhaled bronchodilator is significant with complete reversibility of airflow obstruction. A CHANGE - 10/0 HI FLV1 OF FVC IS CONSIDERED SIGNIFICANT

Gender:	Male							
Age (yr):	50	Weig	ht (kg):	110.3				
Height (cm):	165.7		Race:	Caucasian			C	ace 6
Clinical Notes	: Puli	monary	hypertei	nsion. ?worse	ning COPD +/- o	obesity	C	
		Pre B	ronchoo	lilator	Post Bro	onchodilat	or	
	Best	Pred	LLN	Z-score	Best	Z-score	%Chng	-Pre
Spirometry								* A
FEV 1 (L)	1.36	3.36	2.61	-4.21	1.42	-4.10	1.8	2-
FVC (L)	2.51	4.21	3.28	-3.06	2.50	-3.08	-0.2	liow (L
FEV ₁ /FVC	0.54	0.80	0.68	-3.42	0.57	-3.10		-2
Technical Con	nment:	Pre B	D: FEV1	A FVC A	Post BD: FEV	1 A FVC	A	4
								-6
								Volume (L)
	Y	/es	FEV ₁ /FVC	≥ LLN No				
	· · · ·	, .	<u> </u>			, ,		
There is a	n obst	ructive	e venti	latory defe	ect with a re	duced	Inspiratory Inspiratory Reserve Volume	
FVC on ba	iseline	spiror	netry.					Vital
VVIUIIII		Possible		Obstruction	UDSU UCUON			Capacity Total
limits		estriction	ז?				Expiratory Reser Functional Volume	ve Capacity
					VC?		Residual Capacity	Residual Volume

Gender Age (yr) Height (cm) Clinical Note	: Male : 50 : 165.7 es: Puli	Weig monary	sht (kg): Race: hyperte	110.3 Caucasian nsion. ?wor	sening COPD +/-	obesity		Cas
		Pre E	Broncho	dilator	Post Br	onchodilator		
	Best	Pred	LLN	Z-score	Best	Z-score	%Chng	6
Spirometry								4
FEV ₁ (L)	1.36	3.36	2.61	-4.21	1.42	-4.10	1.8	2- (5)
FVC (L)	2.51	4.21	3.28	-3.06	2.50	-3.08	-0.2	low (L
FEV ₁ /FVC	0.54	0.80	0.68	-3.42	0.57	-3.10		-2
Technical Co	omment:	Pre E	3D: FEV1	A FVC A	Post BD: FEV	1A FVCA		-4

Volume

There is an obstructive ventilatory defect with a reduced FVC on baseline spirometry. The response to inhaled bronchodilator is not significant. The reduction in FVC may be due to airflow obstruction or concomitant restriction and measurement of static lung volumes are suggested to further elucidate results.

Gender: Age (yr):	Female 68	Weigh	nt (kg):	78.1				
Height (cm):	159.1		Race:	Caucasian				
Clinical Notes	Asthr	na						
		Pre Bronchodilator			Р	Post Bronchodilator		
	Best	Pred	LLN	Z-score		Best	Z-score	
Spirometry								
FEV ₁ (L)	1.19	2.15	1.57	-2.7		1.52	-1.8	
FVC (L)	1.54	2.76	2.02	-2.8		1.90	-1.94	
FEV ₁ /FVC	0.77	0.79	0.64	-0.2		0.80	+0.21	
Technical Comment:		Pre B	D: FEV1 A	A FVC A	Post BD:	FEV1	A FVC A	

 $FEV_1/FVC \ge LLN$ Yes No $FVC \ge LLN$ $FVC \ge LLN$

There appears to be a restrictive ventilatory defect on baseline spirometry.

> reduced VC?

Limits

Gender:	Female	j				
Age (yr):	68	Weig	ht (kg):	78.1		
Height (cm):	159.1		Race:	Caucasian		
Clinical Note	s: Astł	nma				
		Pre E	Bronchoc	Ро	ost Br	
	Best	Pred	LLN	Z-score	E	Best
Spirometry						
FEV ₁ (L)	1.19	2.15	1.57	-2.7	1	L .52
FVC (L)	1.54	2.76	2.02	-2.8	1	L .90
FEV ₁ /FVC	0.77	0.79	0.64	-0.2	().80
Technical Co	mment:	Pre B	BD: FEV1	A FVC A	Post BD:	FEV

	Pre E	Bronchodi	lator	Post Br	onchodilator		5
Best	Pred	LLN	Z-score	Best	Z-score	%Chng	-Pre -Post
'Y							
1.19	2.15	1.57	-2.7	1.52	-1.8	15	41.0
1.54	2.76	2.02	-2.8	1.90	-1.94	13	E III
0.77	0.79	0.64	-0.2	0.80	+0.21		-3
Comment:	Pre E	BD: FEV1 A	FVC A	Post BD: FEV	1 A EVO		
							0 1 2 2.5 Volume (L)

There appears to be a restrictive ventilatory defect on baseline spirometry. The response to inhaled bronchodilator is significant, suggestive of some reversible airflow limitation. Static lung volumes are suggested to further elucidate results

Gender:	Male							
Age (yr):	47	Weig	ht (kg):	87.3				
Height (cm):	179.7		Race:	Caucasian				
Clinical Notes	: Asth	ima for	review					
		Pre B	ilator	Post Bronchodilator				
	Best	Pred	LLN	Z-score	l	Best	Z-score	
Spirometry								
FEV ₁ (L)	3.44	4.10	3.22	-1.24		3.60	-0.95	
FVC (L)	5.12	5.19	4.08	-0.11	!	5.07	-0.18	
FEV ₁ /FVC	0.67	0.79	0.69	-1.87		0.71	-1.31	
Technical Comment:		Pre B	D: FEV1	A FVC A	Post BD:	FEV	1 A FVC	А

Case 8

%Chng

3.9

-1.0

There is an obstructive ventilatory defect on baseline spirometry.

Gender:MaleAge (yr):47Weight (kg):87.3Height (cm):179.7Race:CaucasianClinical Notes:Asthma for reviewPre BronchodilatorBestPredLLNZ-score

Spirometry			
FEV ₁ (L)	3.44	4.10	3.22
FVC (L)	5.12	5.19	4.08
FEV ₁ /FVC	0.67	0.79	0.69
Technical Co	Pre BD: FEV1		

Z-score .22 -1.24 .08 -0.11 .69 -1.87 FEV1 A FVC A
 Best
 Z-score

 3.60
 -0.95

 5.07
 -0.18

 0.71
 -1.31

 Post BD:
 FEV1 A
 FVC A

Post Bronchodilator

 $\begin{array}{|c|c|} \hline FEV_1/FVC \ge LLN \\ \hline No \\ \hline \end{array}$

There is an obstructive ventilatory defect on baseline spirometry. The response to inhaled bronchodilator is not significant, though spirometry returns to within normal limits.

VC?

Case 8

Important in occupational medicine when you are screening a generally healthy population.

Key messages

- Spirometry
 - International standards for test performance, QA and interpretation.
 - Standards have recently been updated is your practice up to date?
 - Best practice to operate using standards
- Spirometry is one of a suite of lung function tests
 - May need additional tests to provide further information for decision making
- Interpretation strategies
 - Standard has recently been updated
 - What reference sets are you using? GLI 2012 Spirometry Reference Set
 - Be cautious in interpreting tests of suboptimal quality
 - Restrictive defect includes TLC in definition be careful