Measuring vaccine impact – principles and examples

Peter McIntyre PhD, FRACP, FAFPHM Professor, Discipline of Adolescent and Child Health U Sydney Senior Professorial Fellow, NCIRS, Australia Professor, Dunedin School of Medicine, U Otago, New Zealand Medical Advisor, Immunisation Advisory Centre, U Auckland

Global public health impact – a daunting prospect

Global Public Health Impact of Vaccines in Children **FREE**

Peter McIntyre, University of Otago, Department of Women's and Children's Health, Dunedin School of Medicine

and Tony Walls, University of Otago Christchurch, Department of Paediatrics

https://doi.org/10.1093/acrefore/9780190632366.013.64 Published online: 29 May 2020

Page 1 of 27

Printed from Oxford Research Encyclopedias, Global Public Health. Under the terms of the licence agreement print out a single article for personal use (for details see Privacy Policy and Legal Notice). date: 19 January 2021

Measuring vaccine impact - Principles

- Efficacy vs Effectiveness
- Direct vs Indirect effects
- Vaccine-Preventable Disease Incidence (VPDI)
 - Syndromic diagnosis versus Laboratory-confirmed
 - "Vaccine Probe"
- Disease severity
- Impacts on health systems and the broader economy
- Negative or "trade-off" effects

Measuring vaccine impact – Examples

• Pertussis – declines in deaths pre-vaccine

• Pneumococcus – invasive disease (IPD) vs pneumonia

• Meningococcal disease – changes background incidence

• Disease severity – COVID vaccines and variants

Principles -1

Dilemma: methodological perfection vs real-world translation

Efficacy vs Effectiveness Clemens JAMA 1996

Table 1.-Decisions That Determine the Efficacy Perspective of Phase III Trials

Special Communication

Evaluating New Vaccines for Developing Countries

Efficacy or Effectiveness?

John Clemens, MD; Ruth Brenner, MD, MPH; Malla Rao, MEngg; Nebiat Tafari, MD; Charles Lowe, M

issue	Decisions for Efficacy Trial	
Study population	High-risk, highly responsive individuals	
Vaccine formulation and regimen	Designed to maximize immunogenicity	
Storage and administration of vaccine	Ideal conditions, intensive monitoring, and strict supervision	
Comparison agent	Agent with no activity against the target infection	
Concomitant therapies and practices	Excluded if they are anticipated to interfere with vaccine immunogenicity	
Unit of allocation	Selected to maximize statistical power and to minimize transmission of vaccine organisms to controls and to other vaccinees (usually individuals	
Outcomes for assessing the impact of vaccination	Narrowly defined events that are responsive to vaccine-induced immunity	Limitations of efficacy trials
Outcomes for assessing vaccine safety	Adverse effects that are expected and frequent and that have a short latency period	
Primary index of vaccine protection	Protective efficacy	
Subjects included in the analyses of protection	Completely and correctly dosed	
Outcomes included in the analyses of protection	Episodes of target infection beginning after an "immunogenic window"	
Duration of the follow-up for evaluating vaccine protection	Sufficiently long to yield statistically precise results	
Measurement of the net costs of vaccination	Not essential	

Efficacy vs Effectiveness – conflicting RCT results Clemens JAMA 1996

Table 2.—Examples of Conflicting Sets of Contemporary Randomized Controlled Phase III Trials

Vaccine and Outcome Evaluated, Site (Source)	Age Group (No. of Doses)*	Sample Size†	Post- vaccination Follow-up	Protective Efficacy, % (95% Confidence Interval)		
RIT 4237						
Rotavirus diarrhea						
Finland (Vesikari et al ³³)	8-11 mo (1)	178	5 mo	47/88‡§ (-10 to 75)/(63 to 96)		
Rwanda (De Mol et al ³⁶)	3-8 mo (1)	245	≤4 mo	0/NR‡ (-304 to 67)		
The Gambia (Hanlon et al34)	2.5-4.5 mo (1-3)	253	≥3 mo	33/7‡ (4 to 53)/(-37 to 37)		
Peru (Lanata et al ³⁵)	2-18 mo (1)	196	18 mo	15/63‡ (-41 to 48) (-9 to 85)		
Ty21a Typhoid fever Egypt (Wahdan et al ³⁷)	6-7 y (3)	32 388	Зу	96∥ (70 to 99)		
Chile (Levine et al ¹⁷)	5-14 y (3)	81 621	Зу	77 (60 to 87)		
Indonesia (Simanjuntak et al14)	3-19 y (3)	9460	2.5 y	53 (35 to 66)		
PRP-D						
Invasive Hib						
Finland (Eskola et al ³⁶)	2-6 mo (3)	114 000	8-12 mo	90 (70 to 96)		
Alaska (Ward et al ³⁹)	2-6 mo (3)	2102	2-18 mo	35 (-57 to 73)		

Hib vaccine trial in low vs high incidence population

Herd immunity

INVITED ARTICLE VACCINES

Stanley Plotkin, Section Editor

"Herd Immunity": A Rough Guide

Paul Fine, Ken Eames, and David L. Heymann

Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom

The term "herd immunity" is widely used but carries a variety of meanings [1-7]. Some authors use it to describe the proportion immune among individuals in a population. Others use it with reference to a particular threshold proportion of immune individuals that should lead to a decline in incidence of infection. Still others use it to refer to a pattern of immunity that should protect a population from invasion of a new infection. A common implication of the term is that the risk of infection among susceptible individuals in a population is reduced by the presence and proximity of immune individuals (this is sometimes referred to as "indirect protection" or a "herd effect"). We provide brief historical, epidemiologic, theoretical, and pragmatic public health perspectives on this concept.

Indirect effects = disease incidence in unvaccinated typically can't be assessed in a RCT

- Is disease incidence measured similarly in non-vaccinated?
 - Blood culture practice for pneumonia (IPD)?
 - Stool testing for pathogens (rotavirus)?
 - Clinical syndrome vs laboratory testing (varicella, zoster)?
- May be very influential in cost-effectiveness considerations
 - Pneumococcal conjugate vaccine
 - Meningococcal ACWY

Vaccine-Preventable Disease Incidence

Vaccine efficacy = Incidence in controls – Incidence in vaccinated

Incidence in controls

VPDI = VE x Incidence in controls

ie takes into account disease incidence in the population

^a All incidences and VPDIs are given as per 1000 person-years.

^b IPD, invasive pneumococcal disease.

Effect of Human Rotavirus Vaccine on Severe Diarrhea in African Infants

Shabir A. Madhi, M.D., Nigel A. Cunliffe, M.B., Ch.B., Ph.D., Duncan Steele, Ph.D., Desirée Witte, M.D., Mari Kirsten, M.D., Cheryl Louw, M.D., Bagrey Ngwira, M.D., John C. Victor, Ph.D., M.P.H., Paul H. Gillard, M.D., Brigitte B. Cheuvart, Ph.D., Htay H. Han, M.B., B.S., and Kathleen M. Neuzil, M.D., M.P.H.

Incidence of severe rotavirus diarrhoea and all cause gastroenteritis in Malawi and South Africa

Severity and sequelae: comparing 5 VPDs - US data (Black Vaccine 2013)

Cost-effectiveness driven by overall incidence, not by rare severe outcomes

"Full" value of vaccination

Table 1. Framework of vaccination benefits

Perspective		Benefit categories	
	W	Health care cost savings	
	Narro	Care-related productivity gains	
		Outcome-related productivity gains	
ad			Behavior-related productivity gains
Bro		Community health externalities	
		Community economic externalities	
		Risk reduction gains	
		Health gains	

Pertussis

"It's all due to improved living standards, vaccines have had no impact"

Deaths from diphtheria and pertussis - Australia

Pertussis: reductions in deaths pre-immunisation Chow et al Clin ID 2014

Deaths and vaccine coverage 1903-1992 Netherlands (van Wijhe Lancet ID 2016)

Figure 2: All-cause mortality burden in years of life lost up to age 20 years per livebirth in the Netherlands

_

	Year of introduction of vaccination	Average contribu cause mortality l	ution to all- burden	Reduction in mortality burden due to mass vaccinations (95% prediction interval)			
		Before introduction	After introduction	YLL20 in thousands	Deaths in thousands		
Diphtheria	1953	1.36%	0.004%	38 (28–52)	3 (2-4)		
Pertussis	1954	3.75%	0.024%	103 (79–134)	6 (4-7)		

Pneumococcal disease

Disease burden measurement Changes in serotypes – IPD and pneumonia

How much pneumococcal disease?

The 3+0 schedule

Clinical Infectious Diseases

MAJOR ARTICLE

Effectiveness of 7- and 13-Valent Pneumococcal Conjugate Vaccines in a Schedule Without a Booster Dose: A 10-Year Observational Study

Sanjay Jayasinghe,¹ Clayton Chiu,¹ Helen Quinn,¹ Rob Menzies,² Robin Gilmour,³ and Peter McIntyre¹

The Incidence rate ratio

Table 2. Incidence Rates (per 100 000) and Incidence Rate Ratios Before and After Vaccine Introduction for 7-Valent and 13-Valent Pneumococcal Conjugate Vaccine, by Serotype Categories and Age Group

		PCV7									
Age Group	Serotype Category	Pre–Vaccine Introduction (2002–2004)	Post–Vaccine Introduction (2007–2008)	IRR	(95% CI)	Pre–Vaccine Introduction (2008–2009 to 2010–2011)	Post–Vaccine Introduction (2014)	IRR	(95% CI)	IRR Post- PCV13 vs Pre-PCV7	(95% Cl)
<2 y	VT ^a	84 (402.6)	3.0 (15.7)	0.04	(.02–.06)	19.9 (107.0)	6.9 (40.2)	0.35	(.24–.48)	0.02	(.01–.04)
	NVT ^b	12.1 (57.8)	22.2 (116.3)	1.8 <mark>4</mark>	(1.44–2.34)	7.9 (42.7)	10.5 (60.8)	1.32	(.96–1.82)	1.32	(1.02-1.71)
	Total	96 (460.3)	25.2 (132)	0.26	(.22–.31)	27.8 (149.7)	17.5 (101.0)	0.63	(.50–.78)	0.18	(.15–.22)
2–4 y	VT ^a	25.8 (185.6)	1.8 (14.2)	0.07	(.04–.12)	7.9 (63.7)	4.4 (38.4)	0. <mark>56</mark>	(.38–.79)	0.04	(.0207)
	NVT ^b	3.5 (25.0)	8.8 (68.8)	2.52	(1.80–3.55)	3.7 (30.0)	4.7 (40.6)	1.26	(.86–1.86)	2.35	(1.67-3.30)
	Total	29.3 (210.7)	10.6 (83.0)	0.36	(.2845)	11.6 (93.7)	9.1 (79.0)	0.78	(.60–1.01)	0.31	(.24–.40)

Clinical Infectious Diseases

MAJOR ARTICLE

Effectiveness of 7- and 13-Valent Pneumococcal Conjugate Vaccines in a Schedule Without a Booster Dose: A 10-Year Observational Study

Sanjay Jayasinghe,¹ Clayton Chiu,¹ Helen Quinn,¹ Rob Menzies,² Robin Gilmour,³ and Peter McIntyre¹

■ VT:PCV7 NT:13v-non-7v ØNVT ■ Not typed

Measuring waning immunity – relative odds of vaccine serotype IPD

Table 4. Effectiveness of Pneumococcal Conjugate Vaccine 7 (PCV7) and PCV13 Against Invasive Pneumococcal Disease (IPD) Due to Vaccine Serotypes (VT) and Relative Odds of VT IPD by Time Since Receipt of the Third Vaccine Dose

Vaccine	Time Interval	Cases N (% Vaccinated)	Controls N (%Vaccinated)	Vaccine Effectiveness, % (95% CI, <i>P</i>)	Relative Odds of Vaccine Serotype Invasive Pneumococcal Disease ^a (95% CI, <i>P</i>)
PCV7	Up to 12 Months post-last dose	36 (47.2)	393 (78.6)	89.4 (75.8 to 95.3, <.001)	Reference
	12–<24 months post-last dose	33 (42.4)	238 (64.7)	74.0 (23.9 to 91.1, .014)	2.404 (0.782-7.392, .126)
	24–<36 months post-last dose	30 (36.7)	193 (56.5)	40.7 (<-100.0 to 84.7, .450)	5.620 (1.240-25.421, .025)
	≥36 months post-last dose	38 (50.0)	262 (67.9)	16.7 (<-100.0 to 77.8, .787)	4.891(1.751-35.602, .007)
PCV13	Up to 12 months post-last dose	48 (54.2)	460 (78.5)	87.1 (70.6 to 94.3, <.001)	Reference
	12–<24 months post-last dose	50 <mark>(</mark> 56.0)	401 (75.3)	69.6 (23.1 to 88.0, .012)	2.356 (0.811-6.848, .115)
	24–<36 months post-last dose	30 (36.4)	169 (41.4)	23.3 (<-100.0 to 86.1, .760)	5.944 (1.002–35.220, .050)

Abbreviationer OL confidence interval: DOV/7.7 valent province consistence DOV/12.12 valent province consistence vacaine

Meningococcal disease

Changes in diagnostics Changes in serotypes

Vaccine impact on bacterial meningitis – US

Figure 2: Prevalence of bacterial meningitis in the USA attributable to Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, 1986–2007^{3,6,52}

Meningococcal disease - Australia by serogroup and year, 1999–2017

Meningococcal disease epidemiology in Australia 10 years after implementation of a national conjugate meningococcal C immunization programme

Table 2. Meningoccocal disease in Australia by age group, serogroup and year, adjusted for untyped cases

		Adjusted* tot rate/100 000 j	IRR 2010 2012 nr				
•		2000-2002		2010-2012		2010-2	2002
Age group (years)	Serogroup	Cases (raw)	Rate	Cases (raw)	Rate	IRR	95% CI
<1	С	22 (17)	2.93	3 (3)	0.34	0.11	0.034-0.38
1.4	Non-C	204 (161)	27.15	97 (89)	10.96	0.40	0.31 - 0.51
1–4	C Non C	95 (70)	3.10	0(0) 126(107)	0	0.40	0.22 0.40
5 14	Non-C	278(204) 120(79)	9.07	120(107)	0.04	0.40	0.32 - 0.49
J-14	Non-C	120(79) 180(118)	2.24	5 (2) 68 (53)	0.82	0.37	0.28 0.48
15 24	Non-C	282(225)	3.57	6 (6)	0.07	0.02	0.28 - 0.48
13-24	Non-C	309(247)	3.91	171(162)	1.86	0.47	$0.39_{-0.57}$
25_39	C	116(79)	0.89	5(5)	0.03	0.04	0.02 - 0.10
25 57	Non-C	106(72)	0.81	48 (44)	0.33	0.41	0.29 - 0.58
>40	C	114 (86)	0.46	21 (19)	0.07	0.15	0.09 - 0.24
210	Non-C	172 (130)	0.69	144 (135)	0.47	0.68	0.54-0.85
1-24	С	497 (374)	2.61	9 (8)	0.04	0.02	0.01-0.032
	Non-C	767 (569)	4.03	365 (322)	1.73	0.43	0.38-0.49
≥25	С	230 (165)	0.60	26 (24)	0.06	0.10	0.06-0.14
	Non-C	278 (202)	0.73	192 (179)	0.43	0.58	0.48 - 0.70
All ages	C	749 (556)	1.30	38 (35)	0.06	0.04	0.02-0.06
r in agos	Non-C	1249 (932)	2.16	654 (590)	0.97	0.45	0.02 - 0.00 0.41 - 0.50

SARS-CoV-2 "variants of concern" What do they mean for vaccines?

Importance of disease severity

Global Epidemiology – Cases and Deaths

Figure 1: COVID-19 cases reported weekly by WHO Region, and global deaths, as of 21 February 2021**

Variants of concern

Concern =

- 1. increased transmission
 - 2. increased severity
- 3. Escape from vaccine-induced immunity

Current variants of concern

Table 3: Overview of emerging information on key variants of concern, as of 23 February 2021*

Nextstrain clade	20I/501Y.V1	20H /501Y.V2 [†]	20J/501Y.V3	
Pango lineage	B.1.1.7	B.1.351	B.1.1.28.1	
GISAID clade	GR	GH	GR	
Alternate names	VOC 202012/01 ⁺	VOC 202012/02	P.1 [†]	
First detected by	United Kingdom	South Africa	Brazil / Japan	
First appearance	20 September 2020	Early August 2020	December 2020	
Key spike mutations	H69/V70 deletion; Y144	L242/A243/L244 deletion; N501Y; D614G;	N501Y; D614G;	
	deletion; N501Y; A570D;	E484K; and K417N	E484K; and K417N	
	D614G; and P681H			
Key mutation in common	S106/G107	7/F108 deletion in Non-Structural Protein 6 (N	SP6)	
Transmissibility*	Increased ¹ (36%-75%) ² ,	Increased [1.50 (95% CI: 1.20-2.13) times	Suggested to be	
	increased secondary	more transmissible than previously	increased	
	attack rate ³ (10% to	circulating variants] ^{4,5}		
	13%)			
Severity*	Possible increased	No impact reported to date ^{4,5} , no	Under	
	severity and mortality ⁶	significant change in-hospital mortality ⁷	investigation, no	
			impact reported	
			to date	
Neutralization capacity*	Slight reduction but	Decreased, suggesting potential increased	Potential	
	overall neutralizing titers	risk of reinfection ^{4,9,10}	decrease, small	
	still remained above the		number of	
	levels expected to confer		reinfections	
	protection ⁸		reported ^{11,12}	

Vaccines preventing what? Importance of disease severity

Vaccine	Cases/Total in placebo	Severe	Cases/Severe as % of Total Placebo		
AZ simian adenovirus	101/5829	10		1.7%/0.17%	
Janssen Adeno type 26	348/21888	29		1.6%/0.13%	
Pfizer BNT162b2	169/18846	9		0.9%/0.04%	
Moderna mRNA 1273	269/15181	30		1.8%/0.19%	

Pfizer trial placebo group had half as many cases as other trials and 1/3 to 1/5 severe cases

J&J Trial first to have data on the South African and Brazilian variants

Vaccine Efficacy Consistently High Across Key Countries > Days 28

		# Even	its / N				> Day 28	
Country % Variant	Severity	Ad26.COV2.S N = 19,306	Placebo N = 19,178					Vaccine Efficacy (95%Cl)
United States	Moderate-Severe/Critical	32 / 8,958	112 / 8,835			F		72.0% (58.2, 81.7)
3% CAL.20C	Severe/Critical	1 / 8,958	7 / 8,835	-				85.9% (-9.4, 99.7)
Brazil	Moderate-Severe/Critical	24 / 3,354	74 / 3,312			I		68.1% (48.8, 80.7)
69% P.2 lineage 31% D614G	Severe/Critical	1/3,354	8 / 3,312		·			87.6% (7.8, 99.7)
South Africa	Moderate-Severe/Critical	23 / 2,449	64 / 2,463			I		64.0% (41.2, 78.7)
95% B.1.351 3% D614G	Severe/Critical	4 / 2,449	22 / 2,463					81.7% (46.2, 95.4)
				-25	0 25	5 50	75 10	0

Equivalent efficacy vs severe/critical disease for variants

Summary

- Issues in measuring vaccine impact
 - Direct vs Indirect effects
 - Vaccine-Preventable Disease Incidence (VPDI)
 - Disease severity
- Case studies
 - Declines pre-vaccine: pertussis, meningococcal disease
 - Changes in laboratory measures: meningococcal disease, IPD
 - Importance of disease severity: COVID variants