Bone Marrow Transplantation and malignant haematology

Jeff Szer
Clinical Haematology at PeterMac and The Royal Melbourne Hospital

@marrow
Tips for haematological malignancies

• Splenomegaly
 • Never see in myeloma
 • In AML confined to monocytic leukaemias
 • Don’t forget the gums (and potassium)
 • Common in MPNs
 • Thrombocytopenia may not be real

• Post splenectomy changes
 • Howell-Jolly bodies
 • Target cells
More tips: genes

• CML
 • BCR-ABL Philadelphia chromosome: t(9;22)
• MPN
 • JAK2 and CALR
• AML
 • FLT3, NPM1
 • t(15;17): PML-RARα
 • Coagulopathy
 • Differentiation syndrome
 • inv(16), t(8;21): core-binding-factor mutations
• ALL
 • Philadelphia chromosome
Some more random tips

• Myeloid cells are stickier than lymphoid cells
 • Rarely will see hyperviscosity from intense lymphocytosis

• IgM > IgA >> IgG for hyperviscosity

• Hyperkalaemia in an asymptomatic patient with very high leukocyte count
 • Time on bench
Transplant types

• Donor source
 • Allogeneic
 • HLA-identical sibling
 • HLA-matched unrelated volunteer donor
 • Haploidentical family member donor
 • Stem cell source:
 • Peripheral blood derived
 • Bone marrow
 • Umbilical cord blood
• Autologous
 • Almost 100% peripheral blood
It all started here
Difference between allogeneic and autologous transplants

• Autologous transplants are simply a vehicle for delivering highly marrow-toxic therapy
 • Myeloma
 • NHL and HL
 • Rarely, specific solid tumours (germ cell, small round cell)

• Allogeneic transplants
 • High dose therapy
 • Also reduced-intensity
 • Graft-versus-host disease: T lymphocyte driven
 • Immunotherapy
 • CML>AML>ALL
 • FL=MCL=CLL>>DLBCL (except Primary Mediastinal)
Timing and planning of allogeneic transplants

• Important to understand patient eligibility and timing
 • Stable disease
 • Appropriate time in disease process

• Pre-transplant involvement
 • Ensure treatments given do not preclude transplant
 • Allow patients to move quickly to transplant if needed, prior to disease progression or development of complications
 • Allow adequate time for donor search if needed.
Day 0

Conditioning

Conditioning regimen
- intensity
- chemotherapy
- radiotherapy
- T cell depletion
- Immuno-manipulation

Immunosuppression

Donor and product variables
- Sibling
- MUD
- CORD
- Haplo-identical
- Donor derived cellular therapies

Cells

Donor derived cellular therapies

Patient variables
- Comorbidities
- Psychology
- Sociology

Psychology

Past treatments

Late Effects

Engraftment

Post transplant maintenance strategies
- Immuno-manipulation
- Treatment of GVHD

Conditioning regimen intensity chemotherapy radiotherapy T cell depletion Immuno-manipulation

Sociology

Conditioning

Immunosuppression
ANATOMY OF AN ALLOGRAFT

Early Complications = Sepsis, opportunistic infections, Mucositis, Fluid Balance, Drug tox (VOD)

Late Tox = opportunistic infection

Acute GVHD

Chronic GVHD

Relapse

Past treatments

Day 0 Day 100
Who gets what?

• Patients with active and especially refractory disease (except for MDS and MF) rarely are offered transplant
 • Exception: autologous transplant for myeloma

• Patients with bone marrow failure are not eligible for autologous transplants (obvious)

• Poorer risk leukaemias do worse after transplant as well

• The earlier in the course of treatment a transplant is done
 • Less toxicity
 • Greater chance of disease control
 • Most difficulty with risk/benefit
Who gets what?

• Autologous transplants for myeloma
 • Early in disease course
 • Improve survival and QOL
 • Non curative

• Autologous transplants for lymphoma (inc Hodgkin)
 • After salvage therapy
 • Curative intent

• Allogeneic transplants
 • Always with curative intent
Graft versus host disease

• Donor T cell driven
 • But not as simple as that

• Acute
 • In first 100 days traditionally
 • Skin liver and gut
 • Prophylaxis:
 • Tissue typing (blood groups largely irrelevant
 • Ciclosporin/MTX; ATG; Post-transplant cyclophosphamide (PTCy)

• Treatment
 • Corticosteroids
Graft versus host disease

- Chronic
 - Generally after day 100
 - The major impediment to Karnofsky score of 100
- Risk factors:
 - Prior acute GVHD
 - Older donors
 - Peripheral blood derived stem cell source
- Target organs
 - All (kidneys extremely rare)
 - Looks like many autoimmune diseases (but is alloimmune)
- Treatment
 - Corticosteroids
What might you see?

- Graft versus host disease
 - Skin: dry, itchy, dyspigmentation, sclerodermatous
 - Oral: ulceration, lichenoid
 - Liver: usually tests only
 - Gut: chronic diarrhoea, malnutrition, pancreatic insufficiency
 - Ocular: dry eyes, cataracts
 - Lungs: Bronchiolitis Obliterans
 - Effects of ongoing immunosuppression: steroids ± …..

- Remember infection risk and effective post-splenectomy state
 - Secondary immunoglobulin deficiency
 - Lymphopoenia
AML Prognostic Risk Groups

Based on Cytogenetic Risk and Molecular Profile (NCCN Guidelines)

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Cytogenetic Profile</th>
<th>Molecular Abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>Core binding factor (CBF): t(8;21)* or inv(16)* or t(16;16) t(15;17)</td>
<td>Normal cytogenetics: Mutated NPM1 without FLT3-ITD or isolated mutated biallelic CEBPA</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Normal cytogenetics trisomy 8 alone t(9;11) Other non-defined</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>Complex (≥ 3 clonal chromosomal abnormalities) Monosomal karyotype del 5, 5q, del 7, 7q 11q23 – non t(9;11) inv(3), t(3;3) t(6;9), t(9;22)</td>
<td>Cytogenetically normal (CN) with FLT3-ITD TP53 mutation</td>
</tr>
</tbody>
</table>

Emerging data indicate that the presence of c-KIT mutations in patients with t(8:21), and to a lesser extent inv(16), confers a higher risk of relapse. These patients are considered intermediate risk and should be considered for clinical trials, if available.
Timing for HCT Consultation

Adult Leukemias and Myelodysplasia

Acute Myelogenous Leukemia (AML) - Adult

High-resolution HLA typing is recommended at diagnosis for all patients

Early after initial diagnosis, all AML patients including:

- CR1 — except favorable risk AML [defined as: t(16;16), inv 16, or t(8;21) without c-KIT mutation; t(15;17); normal cytogenetics with NPM1 or isolated biallelic CEBPA mutation and without FLT3-ITD]
- Antecedent hematological disease (e.g., myelodysplastic syndrome (MDS))
- Treatment-related leukemia
- Primary induction failure or relapse
- Presence of minimal residual disease after initial or subsequent therapy
- CR2 and beyond, if not previously evaluated
Transplantation Timing Matters

Early Stage

Intermediate Stage

Late Stage

Patients transplanted earlier in their disease have better outcomes than patients with advanced disease, regardless of the degree of match.

Overall Survival by Disease Group

MDS (N=54)
- **RIC 85.2%**
- **MAC 81.5%**
- **P=0.71 (18 month pointwise)**

AML (N=218)
- **RIC 63%**
- **MAC 76.8%**
- **P=0.027 (18 month pointwise)**
Treatment-related Mortality

\[P=0.02 \ (18 \text{ month pointwise}) \]

MAC 15.8%

RIC 4.4%

Timing for HCT Consultation

Adult Leukemias and Myelodysplasia

Acute lymphoblastic leukemia (ALL) – Adult

High-resolution HLA typing is recommended at diagnosis for all patients

Early after initial diagnosis, all ALL patients including:

- CR1
- Primary induction failure or relapse
- Presence of minimal residual disease after initial or subsequent therapy
- CR2 and beyond, if not previously evaluated
HCT for Myeloproliferative Neoplasm

- Most of the outcome data are from retrospective studies and relate to HCT for primary myelofibrosis or myelofibrosis (MF) evolved from other myeloproliferative neoplasms.
- DIPSS has as been validated as predictor for post-HCT outcomes.
- DIPSS independent factors - karyotype (DIPSS plus) and gene mutation profile (JAK2/MPL/CALR or ASXL1) may also be valuable for decision making.
- No prospective HCT versus non-HCT comparative studies.
HCT for Myeloproliferative Neoplasm

- In the largest study (n=438) outcomes with allo-HCT versus non-HCT approach were compared in primary MF patients grouped by DIPSS status.
- DIPSS intermediate-2 or high risk patients clearly benefited from HCT. Low risk did better with non-HCT approach. Intermediate-1 had similar survival with the two approaches.
- Caveats:
 - Only patients with primary MF were included
 - Ruxolitinib was not used
 - All patients were < 65 years old

HCT for Myeloproliferative Neoplasm

• Generally accepted indications:
 • Primary Myelofibrosis DIPSS Int-2 or High Risk
 • High Risk karyotype and gene profile (even with low risk DIPSS)
 • AML after MF
 • Secondary MF after ET or PV
 • ELN: < 5 years expected survival

• The balance of risk versus benefit has to be assessed for each patient individually.

• Early referral is strongly advocated to allow optimal patient selection and timing to ensure the highest likelihood of benefiting from HCT
Survival after HLA-Matched Sibling Donor HCT for MPNs, 2004-2014

Probability, %

Years

Myelofibrosis (n=631)

Other MPN (n=770)

p=0.009

Survival after Allogeneic HCT for Chronic Lymphocytic Leukemia (CLL), 2004-2014

- HLA-Matched Sibling (n=1,282)
- Unrelated Donor (n=1,693)

p < 0.001

ASBMT Recommendations for HCT in Non-Hodgkin Lymphoma

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ ASCT is not recommended as first-line therapy except for high IPI group.</td>
<td>A</td>
</tr>
<tr>
<td>➢ ASCT is not recommended for pts who achieve PR to abbreviated (3 cycles) induction regimen.</td>
<td>A</td>
</tr>
<tr>
<td>➢ ASCT is recommended as part of salvage therapy for pts with chemosensitive relapsed DLBCL.</td>
<td>A</td>
</tr>
<tr>
<td>➢ Older age (>60 years) is not a contraindication for ASCT.</td>
<td>B</td>
</tr>
<tr>
<td>➢ OS outcomes are equivalent for ASCT and Allo-HCT; they have competing risks with regard to relapse and TRM; neither option is recommended over the other.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ASBMT Recommendations for HCT in Non-Hodgkin Lymphoma

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBSC is the standard for stem cell source for ASCT.</td>
<td>A</td>
</tr>
<tr>
<td>Rituximab maintenance is not recommended post ASCT.</td>
<td>A</td>
</tr>
<tr>
<td>There are insufficient data to make a treatment recommendation regarding number of cycles of induction therapy prior to first-line autologous SCT.</td>
<td>N/A</td>
</tr>
<tr>
<td>Planned tandem ASCT is not recommended.</td>
<td>B</td>
</tr>
<tr>
<td>RIC appears to be an acceptable alternative approach for pts who cannot tolerate a myeloablative regimen.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Survival after Autologous HCT for Follicular Lymphoma, 2004-2014

Survival after Allogeneic HCT for Follicular Lymphoma, 2004-2014

- HLA Matched Sibling, Sensitive (n=854)
- Unrelated Donor, Sensitive (n=721)
- HLA Matched Sibling, Resistant (n=139)
- Unrelated Donor, Resistant (n=157)

p<0.001

Causes of Death after Autologous HCT done in 2013-2014

Causes of Death after Unrelated Donor HCT done in 2013-2014

Died within 100 days post-transplant:
- Primary Disease: 34%
- GVHD: 23%
- Graft Rejection: 11%
- Infection: 10%
- Organ Failure: 2%
- Other: 2%

Died at or beyond 100 days post-transplant:
- Primary Disease: 27%
- GVHD: 46%
- Infection: 6%
- Organ Failure: 10%
- Secondary Malignancy: 9%
- Hemorrhage: 1%
- Other: 1%
Conclusions

• In the current era, almost all patients will have a suitable donor

• Optimal timing of HCT is critical to good outcomes

• Early referral to the transplant center ensures that the RIGHT patient gets transplanted at the RIGHT time with the BEST graft source

• Post transplant survivors are at risk for early and late complications months to years following HCT and need ongoing screening, preventive care and follow up