Bone Marrow Transplantation and malignant haematology

Jeff Szer

Clinical Haematology at PeterMac and The Royal Melbourne Hospital

Tips for haematological malignancies

• Splenomegaly

- Never see in myeloma
- In AML confined to monocytic leukaemias
 - Don't forget the gums (and potassium)
- Common in MPNs
- Thrombocytopenia may not be real
- Post splenectomy changes
 - Howell-Jolly bodies
 - Target cells

More tips: genes

- CML
 - BCR-ABL Philadelphia chromosome: t(9;22)
- MPN
 - JAK2 and CALR
- AML
 - FLT3, NPM1
 - t(15;17): PML-RAR α
 - Coagulopathy
 - Differentiation syndrome
 - inv(16), t(8;21): core-binding-factor mutations
- ALL
 - Philadelphia chromosome

Some more random tips

- Myeloid cells are stickier than lymphoid cells
 - Rarely will see hyperviscosity from intense lymphocytosis
- IgM > IgA >> IgG for hyperviscosity
- Hyperkalaemia in an asymptomatic patient with very high leukocyte count
 - Time on bench

Transplant types

• Donor source

- Allogeneic
 - HLA-identical sibling
 - HLA-matched unrelated volunteer donor
 - Haploidentical family member donor
 - Stem cell source:
 - Peripheral blood derived
 - Bone marrow
 - Umbilical cord blood
- Autologous
 - Almost 100% peripheral blood

It all started here

Difference between allogeneic and autologous transplants

- Autologous transplants are simply a vehicle for delivering highly marrow-toxic therapy
 - Myeloma
 - NHL and HL
 - Rarely, specific solid tumours (germ cell, small round cell)
- Allogeneic transplants
 - High dose therapy
 - Also reduced-intensity
 - Graft-versus-host disease: T lymphocyte driven
 - Immunotherapy
 - CML>AML>ALL
 - FL=MCL=CLL>>DLBCL (except Primary Mediastinal)

Timing and planning of allogeneic transplants

- Important to understand patient eligibility and timing
 - Stable disease
 - Appropriate time in disease process
- Pre-transplant involvement
 - Ensure treatments given do not preclude transplant
 - Allow patients to move quickly to transplant if needed, prior to disease progression or development of complications
 - Allow adequate time for donor search if needed.

ANATOMY OF AN ALLOGRAFT

Who gets what?

- Patients with active and especially refractory disease (except for MDS and MF) rarely are offered transplant
 - Exception: autologous transplant for myeloma
- Patients with bone marrow failure are not eligible for autologous transplants (obvious)
- Poorer risk leukaemias do worse after transplant as well
- The earlier in the course of treatment a transplant is done
 - Less toxicitiy
 - Greater chance of disease control
 - Most difficulty with risk/benefit

Who gets what?

- Autologous transplants for myeloma
 - Early in disease course
 - Improve survival and QOL
 - Non curative
- Autologous transplants for lymphoma (inc Hodgkin)
 - After salvage therapy
 - Curative intent
- Allogeneic transplants
 - Always with curative intent

Graft versus host disease

- Donor T cell driven
 - But not as simple as that
- Acute
 - In first 100 days traditionally
 - Skin liver and gut
 - Prophylaxis:
 - Tissue typing (blood groups largely irrelevant
 - Ciclosporin/MTX; ATG; Post-transplant cyclophosphamide (PTCy)
 - Treatment
 - Corticosteroids

Graft versus host disease

- Chronic
 - Generally after day 100
 - The major impediment to Karnofsky score of 100
 - Risk factors:
 - Prior acute GVHD
 - Older donors
 - Peripheral blood derived stem cell source
 - Target organs
 - All (kidneys extremely rare)
 - Looks like many autoimmune diseases (but is alloimmune)
 - Treatment
 - Corticosteroids

What might you see?

- Graft versus host disease
 - Skin: dry, itchy, dyspigmentation,. sclerodermatous
 - Oral: ulceration, lichenoid
 - Liver: usually tests only
 - Gut: chronic diarrhoea, malnutrition, pancreatic insufficiency
 - Ocular: dry eyes, cataracts
 - Lungs: Bronchiolitis Obliterans
 - Effects of ongoing immunosuppression: steroids ±
 - Remember infection risk and effective post-splenectomy state
 - Secondary immunoglobulin deficiency
 - Lymphopoenia

AML Prognostic Risk Groups Based on Cytogenetic Risk and Molecular Profile (NCCN Guidelines)

Risk Group	Cytogenetic Profile	Molecular Abnormalities
Favorable	Core binding factor (CBF): t(8;21)* or inv(16)* or t(16:16) t(15;17)	Normal ctogenetics: Mutated NPM1 without FLT3-ITD or isolated mutated biallelic CEBPA
Intermediate	Normal cytogenetics trisomy 8 alone t(9;11) Other non-defined	
Poor	Complex (\geq 3 clonal chromosomal abnormalities) Monosomal karyotype del 5, 5q, del 7, 7q 11q23 – non t(9;11) inv(3), t(3;3) t(6;9), t(9;22)	Cytogenetically normal (CN) with FLT3-ITD TP53 mutation

*Emerging data indicate that the presence of c-KIT mutations in patients with t(8:21), and to a lesser extent inv(16), confers a higher risk of relapse. These patients are considered intermediate risk and should be considered for clinical trials, if available.

Timing for HCT Consultation Adult Leukemias and Myelodysplasia

Acute Myelogenous Leukemia (AML) - Adult

High-resolution HLA typing is recommended at diagnosis for all patients

Early after initial diagnosis, all AML patients including:

- CR1 except favorable risk AML [defined as: t(16;16), inv 16, or t(8;21) without c-KIT mutation; t(15;17); normal cytogenetics with NPM1 or isolated biallelic CEBPA mutation and without FLT3-ITD]
- Antecedent hematological disease (e.g., myelodysplastic syndrome (MDS))
- Treatment-related leukemia
- · Primary induction failure or relapse
- Presence of minimal residual disease after initial or subsequent therapy
- CR2 and beyond, if not previously evaluated

Transplantation Timing Matters

Patients transplanted earlier in their disease have better outcomes than patients with advanced disease, regardless of the degree of match. Intermediate Stage

Pidala J. et al. Blood. 2014;124(16):2596-2606.

Overall Survival by Disease Group

Treatment-related Mortality

Timing for HCT Consultation Adult Leukemias and Myelodysplasia

Acute lymphoblastic leukemia (ALL) – Adult

High-resolution HLA typing is recommended at diagnosis for all patients

Early after initial diagnosis, all ALL patients including:

- CR1
- Primary induction failure or relapse
- Presence of minimal residual disease after initial or subsequent therapy
- CR2 and beyond, if not previously evaluated

HCT for Myeloproliferative Neoplasm

- Most of the outcome data are from retrospective studies and relate to HCT for primary myelofibrosis or myelofibrosis (MF) evolved from other myeloproliferative neoplasms.
- DIPSS has as been validated as predictor for post-HCT outcomes.
- DIPSS independent factors karyotype (DIPSS plus) and gene mutation profile (JAK2/MPL/CALR or ASXL-1) may also be valuable for decision making
- No prospective HCT versus non-HCT comparative studies

HCT for Myeloproliferative Neoplasm

- In the largest study (n=438) outcomes with allo-HCT versus non-HCT approach were compared in primary MF patients grouped by DIPSS status
- DIPSS intermediate-2 or high risk patients clearly benefited from HCT. Low risk did better with non-HCT approach. Intermediate-1 had similar survival with the two approaches
- Caveats:
 - · Only patients with primary MF were included
 - Ruxolitinib was not used
 - All patients were < 65 years old

HCT for Myeloproliferative Neoplasm

- · Generally accepted indications:
 - Primary <u>Myelofibrosis</u> DIPSS Int-2 or High Risk
 - High Risk karyotype and gene profile (even with low risk DIPSS)
 - AML after MF
 - Secondary MF after ET or PV
 - ELN: < 5 years expected survival
- The balance of risk versus benefit has to be assessed for each patient individually.
- Early referral is strongly advocated to allow optimal patient selection and timing to ensure the highest likelihood of benefiting from HCT

Survival after HLA-Matched Sibling Donor HCT for MPNs, 2004-2014

Survival after Allogeneic HCT for Chronic Lymphocytic Leukemia (CLL), 2004-2014

ASBMT Recommendations for HCT in Non-Hodgkin Lymphoma

Recommendation	Grade of Recommendation
> ASCT is not recommended as first-line therapy except for high IPI group.	Α
> ASCT is not recommended for pts who achieve PR to abbreviated (3 cycles) induction regimen.	A
> ASCT is recommended as part of salvage therapy for pts with chemosensitive relapsed DLBCL.	Α
> Older age (>60 years) is not a contraindication for ASCT.	в
Solution of the other. OS outcomes are equivalent for ASCT and Allo-HCT; they have competing risks with regard to relapse and TRM; neither option is recommended over the other.	N/A

Oliansky DM, et al. Biol Blood Marrow Transplant. 2011;17:20-47; Stiff PJ e.t al. N Engl J Med 2013;369:1681-1690 Gisselbrecht C, et al. J Clin Oncol. 2012;30:4462-4469

ASBMT Recommendations for HCT in Non-Hodgkin Lymphoma

Recommendation	Grade of Recommendation
PBSC is the standard for stem cell source for ASCT.	Α
Rituximab maintenance is not recommended post ASCT.	Α
There are insufficient data to make a treatment recommendation regarding number of cycles of induction therapy prior to first-line autologous SCT.	N/A
Planned tandem ASCT is not recommended.	В
RIC appears to be an acceptable alternative approach for pts who cannot tolerate a myeloablative regimen.	N/A

Survival after Autologous HCT for Follicular Lymphoma, 2004-2014

Survival after Allogeneic HCT for Follicular Lymphoma, 2004-2014

Causes of Death after Autologous HCT done in 2013-2014

D'Souza A, Zhu X. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT): CIBMTR Summary Slides, 2016. Available at: http://www.cibmtr.org

Causes of Death after Unrelated Donor HCT done in 2013-2014

http://www.cibmtr.org

HARDON TRANSPORT BUILD

Died at or beyond 100 days post-transplant

18

Conclusions

- In the current era, almost all patients will have a suitable donor
- Optimal timing of HCT is critical to good outcomes
- Early referral to the transplant center ensures that the RIGHT patient gets transplanted at the RIGHT time with the BEST graft source
- Post transplant survivors are at risk for early and late complications months to years following HCT and need ongoing screening, preventive care and follow up