Investigations in Medicine Haematology

> Carole Smith Haematologist

Reticulocyte counts

- Larger bluish (polychromatic) red cells (RNA)
- Increased with regenerating marrow
 - blood loss
 - haemolysis
 - post chemotherapy
- Reduced in
 - anaemia of chronic disease
 - deficiencies -B12, folate, Fe
 - significant marrow disorders eg aplasia, MDS

Anaemia of chronic disease

- Low Hb usually >90g/l, low reticulocyte count
- Unable to utilise iron
- Normal or low MCV
- High ferritin (acute phase/not utilised)
- High CRP
- May have low EPO, but often normal, few respond
- Mediated by TNF, γIFN, hepcidin
- If iron deficient %sat low, ferritin low-normal
- Trial of oral iron often indicated will need investigation
- Anaemia of chronic disease <u>may</u> respond to iron infusion

Genetic hemochromatosis

Anemia of inflammation

Macrocytosis

- Liver disease
- Alcohol
- $\underline{B}_{\underline{12}}$ /folate deficiency
- Drugs affecting DNA eg MTX, HU
- Hypoxia
- <u>Reticulocytosis</u> (gross)
- <u>Myelodysplasia</u>
- Others <u>hypothyroidism</u>, <u>cold aggs</u>, aplasia, EPO

Low B₁₂ levels

- 20% due to pernicious anaemia
- Elderly atrophic gastritis, reduction in absorption of food bound B_{12}
- Gastrectomy
- Vegans (some B₁₂ on mushrooms)
- Terminal ileal disease
- Metformin
- Erroneous
- Low levels, but normal tissue stores

Pernicious anaemia

- Morphology
 - PB RBC oval macrocytes, hypersegmented neutrophils, cytopenias
 - Marrow megaloblastosis
- IF Abs in 50% (specific cf parietal cell)
- High serum gastrin
- High homocysteine levels (not specific)
- Schilling's test rarely performed
- Urinary methylmalonic acid not routine
- Holo TC II recently introduced some labs

Holo-TC II

Causes of low serum B₁₂ (but normal stores)

- Elderly
- Severe folate deficiency
- Pregnancy/OC
- Myeloma
- 10% of patients with carcinoma
- HIV
- Rare TC 1 deficiency, Vitamin C overdose
- High CV of assay

Thalassaemias - globin chain production imbalance

ß thalassaemia trait

- ß thalassaemia over 100 mutations, usually nucleotide substitutions (2 beta genes)
- Normal haemoglobin (lower limit)
- Low MCV (constant) hypochromic, microcytic red cells, target cells, stippling
- High HbA₂ and HbF (check not iron deficient)
- Hb electrophoresis no abnormal bands unless haemoglobinopathies eg HbE

α thalassaemia

- α thalassaemia usually large deletions of the alpha gene (4 alpha genes normally)
- Single gene mutation low-normal MCV ($\alpha^{+}/\alpha\alpha$)
- Two gene deletions low MCV, positive HbH bodies on the same gene more significant ($\alpha^{o}/\alpha\alpha$ compared to α^{+}/α^{+})
- Three gene deletions HbH disease life long anaemia, previously managed without Tx, splenomegaly
- Four gene deletions hydrops foetalis Hb Bart's (γ)

α thalassaemia

- Hb H preparation 'golf balls' from precipitation of ß chains, not reliable, therefore <u>genetic</u> studies
- Hb A₂, Hb F levels, Hb EPG normal in adults if one or two gene deletion

Tests that suggest haemolysis

- Fall in haemoglobin, increased bilirubin (uncong), urobilinogen on dipstick
- Increased reticulocytes, LDH, low haptoglobin
- Tests that suggest a cause of haemolysis
 - Blood film eg fragments, blister, sickle cells
 - DAT (Coomb's)
 - Urinary haemosiderin (IV haemolysis)
 - Family history, male gender for G6PD

Blood films in haemolysis

- Oxidant drugs and G-6PD deficiency blister, bite cells
- Microangiopathy, valve haemolysis, TTP fragments
- Hereditary spherocytosis, warm AIHA, burns spherocytes
- Hb S sickle cells
- Pyruvate kinase deficiency spiny cells
- Cold AIHA agglutinated cells

Further diagnostic tests for haemolysis

- G6PD deficiency and oxidative haemolysis
- Hereditary spherocytosis
- PNH
- PCH
- Cold agglutinins (titre)
- Hb S sickling test, Hb EPG

Hereditary spherocytosis

- Anaemia, high MCHC, spherocytes >2%
- DAT negative
- Family history
- Increased osmotic fragility (no longer performed)
- Increased autohaemolysis, improved with glc
- Specialised spectrin analysis, flow cytometry eosin-5- maleimide

Warm autoimmune haemolytic anaemia

- Blood film, spherocytes, assoc with CLL/NHL
- DAT most likely positive in warm h'lysis
 – Ig G+/-C3d
- Otherwise associated with ANA positivity, drugs or idiopathic

Cold autoimmune haemolytic anaemia

- Blood film spherocytes, cold agglutinins, high MCV, high MCHC
 may see atypical or malignant lymphocytes
- Cold haemolysis due to IgM (to I or i)
- DAT if positive <u>C3d only</u>
- <u>EBV & Mycoplasma</u> serology
- PCH cold reactive IgG anti-P, Donath-Landsteiner test (rare)

Oxidative haemolysis eg G6PD def

Glucose-6-phosphate dehydrogenase deficiency

- Pentose phosphate pathway, X linked
- No haemolysis between episodes
- Precipitated by fava (broad) beans, sepsis and oxidant drugs e.g. dapsone, salazopyrine, cotrimoxazole, glibenclamide, primaquine, chloroquine, Fansidar, Maloprim
- Screen those at risk e.g. malaria, neonatal jaundice
- Reticulocytosis, helmet (arrow) and blister cells
- Heinz body preparation denatured haemoglobin few labs performing now
- Fluorescent spot screening or G6PD enzyme assay

Paroxysmal Nocturnal Haemoglobinuria

- Cytopenias, iron deficiency, thromboses (unusual sites) and intermittent dark urine (IV haemolysis)
- Marrow may be aplastic, Hb in urine
- Obsolete tests
- sucrose lysis, Ham's test

PNH – flow cytometry

- Reduced glycosophosphatidylinositol (GPI) anchor on haemopoietic cells, due to mutations in the PIG-A gene
- Less inhibition of the complement cascade-lysis
 - DAF CD55
 - MIRL CD59* flow
 cytometry of red/white cells

Polycythaemia

- Primary itch, splenomegaly, panmyelosis
 - Marrow hypercellular with inc reticulum
 - 50% splenomegaly on ultrasound
- Secondary
 - lung disease ?sleep apnoea
 - congenital heart disease
 - Renal PCKs & carcinoma
- pO₂ helpful, EPO not as helpful
- JAK2 mutation in > 95% PRV
- Other MPDs CALR mutn~ 30%MPL <10%

EPO receptor – Jak-2 mutation

Causes of a long PT

- Liver disease
- Vitamin K deficiency
- Warfarin (INR allows laboratory comparison)
- Erroneous specimen
- (specific factor deficiency rare)
- With prolonged APTT
 - Excess heparin
 - DIC, severe hypofibrinogenaemia
 - Lupus inhibitor (rarely effects PT)
 - Extreme of the above

Causes of a prolonged APTT

- Unfractionated heparin (line contamination)
- Lupus anticoagulant (inhibitor)
- Coagulation deficiency
 - Haemophilia A & B, von Willebrand disease
 - Acquired haemophilia (inhibitor rare), but important not to miss
- Factors affecting both or common pathways
 e.g low fibrinogen, DIC
- Incorrectly collected specimen

Coagulation tests and Novel ACs

- Monitoring not routine
- <u>Dabigatran</u> inc aPPT, PT but not linear, inc TCT but too sensitive.
 - Hemoclot or dilute TCT
- <u>Rivaroxaban</u> inc PT, but not reliable for monitoring

– Specific anti-Xa assay

- <u>Apixaban</u> only mildly elevated PT
 - Specific anti-Xa assay

von Willebrand Factor

Diagnosis of von Willebrand disorder

- **Family history** of mucosal bleeding autosomal dominant (common forms)
- Prolonged APTT (may require repeat test, often N)
- <u>vWF:Ag or Glycoprotein 1b receptor binding assay</u>
- <u>Factor VIII:C</u> level
- Functional assay
 - ristocetin cofactor (vWF:RCo)
 - <u>and/or</u> collagen binding assay (vWF:CBA)
- Diagnosis can be difficult, mutational analysis not routine

Thrombocytopenia

- ?decreased production or increased destruction
 with other cytopenias as for neutropenia
- Severe sepsis +/- DIC
- ITP
- Viral infections (usually mild e.g hep C, rarely IM is associated with severe ITP, also HIV)
- Drugs
 - immune <u>heparin</u>, quinine, thiazides
 - suppressive cytotoxics, alcohol

Diagnosis of ITP

- Low platelet platelet count <u>confirmed</u> on blood film and rebleed, blood film otherwise NAD
- <u>Marrow</u> showing inc megakaryocytes
 now <u>not routine</u> in young adults
- <u>ANA, B₁₂, folate, HIV, hepatitis B and C, TFTs</u> (?helicobacter)
- Platelet antibodies not specific
- Normal spleen size
- <u>Exclude</u> drug cause and associated lymphoproliferative disorder

Thrombosis - <u>consideration</u> for further investigation

- Patient < 45 years and unprovoked
- Second or subsequent thrombosis
- Positive family history
- Unusual site
 - Consider whether will alter mgt or adversely affect family members
 - 50% of inherited thrombophilias have a thrombosis secondary to immobility or pregnancy

Acquired thrombotic tendency

- Pregnancy, oral contraceptives
- Antiphospholipid antibodies
 - lupus AC, anticardiolipin, anti- β -2-glycoprotein Abs
- Malignancy breast, mucin secreting
- Rarer
 - Myeloproliferative disorders
 - Nephrotic syndrome
 - Chronic haemolysis
 - PNH (very rare)

Copyright ©2009 American Society of Hematology. Copyright restrictions may apply.

Diagnosis of lupus inhibitor

- Prolonged APTT (normal thrombin time)
- <u>Mixing experiments</u> consistent with an inhibitor
 normal plasma does not correct APTT time
- Specific lupus AC testing
 - Kaolin Clotting Time
 - Dilute Russell Viper Venom Time
 - Correction of APTT with platelet phospholipid
- Associated antiphospholipid antibodies
 - e.g. ACL, antiß₂GPI

Copyright ©2009 American Society of Hematology. Copyright restrictions may apply.

Figure 1. Endothelial Activation of Coagulation and the Protein C Pathway.

Coagulation is initiated by tissue factor and other coagulation-factor complexes on the surface of endothelial cells and monocytes. The activated factor X that is consequently generated requires activated cofactors V and VIII to produce thrombin, which in turn forms a complex with thrombomodulin. Protein C activation takes place by way of interaction between the thrombomodulin–thrombin complex and the endothelial protein C receptor. Activated protein C, together with its cofactor, protein S, inactivates factors V and VIII to provide negative feedback to the generation of thrombin. Complex 1 comprises tissue factor and coagulation factors VII, IX, and X; complex 2 comprises factors IX and X and cofactor VIII; and complex 3 comprises factor X, prothrombin, and cofactor V.

Inherited thrombotic tendency

- Factor V Leiden/ APCR
- Prothrombin 20210A 3-5%
- Protein C deficiency
- Protein S deficiency
- Antithrombin III deficiency -<5%
- ? Hyperhomocysteine deficiency (MTHFR)
- Rare dysfibrinogenaemia
- Not-defined (50%) or ill defined
 - eg plasminogen activator deficiency

- 20-50%

- 5 %

- 5%

Factor V Leiden

- Activated protein C resistance (APCR)
 screening test, PCR for genetic testing
- 1-7% of the Caucasian population
- Glu to Arg mutation in FV at nucleotide 1691
- Site where APC cleaves and inactivates FVa
 Thrombotic risk 10X for heterozygotes
 80X for homozygotes

Compound heterozygotes with other thrombophilias

What tests should I do?

- Difficult! Not many! Will they alter management? (Choosing Wisely)
 - FBE
 - Lupus AC
 - Congenital haemophilias perhaps ATIII is the only one where a result may influence mgt
 - JAK2 mutation for MPD if unusual site e.g Budd Chiari

Flow cytometry

- Used for
 - lymphocyte analysis eg CD4 number
 - classification, diagnosis and detection of residual disease of lymphoproliferative disorders, acute leukaemias and myeloma
 - PNH, platelet Abs, foetomaternal haemorrhage
 - Stem cell enumeration of stem cell transplantation.
- PB, nodes and BM
- <u>Aberrant or immature</u> markers or
- <u>Monoclonality</u> of B cells (not T) by kappa/lamba ratio

Flow cytometry (2)

- <u>T cell</u> markers <u>CD3</u>
 - CD4 (T helpers) low in HIV
 - CD8 (T suppressor/cytotoxic)
- <u>B cell</u> markers <u>CD19</u>
 - kappa/lambda light chain ratio 2:1
- CLL <u>CD19/CD5</u> dual markers

Cytogenetics/FISH

- Can be diagnostic, prognostic or direct treatment.
- Conventional cytogenetics in metaphase.
- Florescent in situ hybridization (FISH). Can be used in interphase, often used for lymphoid malignancies as often hard to induce cell division.

APML	
Ash Image bank	

ane ane	21					*3
88	976) 976)		88		影響	88
13 13	8 A	8 6	5	8	高盛 17	篇 毌 18
88 8 19	20		21	a 6 22	The second se	¢

Cytogenetics/FISH

- Examples of diagnostic are myelodysplasia in conjunction with morphology and subtypes of AML, e.g. APML, inv16
- Prognostic examples are numerous, but e.g. poor risk cytogenetics in AML may lead to allografting or treatment is not given in patients with high toxicity risk.
- Treatment altering e.g. ATRA for APML, 17p- in CLL (poor prognosis, respond to Bruton kinase inhibitors such as ibrutinib).

Examples of molecular tests other than for MPN <u>fairly</u> specific for diagnosis of haem malignancy

- bcr-abl CML (Ph chromosome, t9:21)*
- PML-RARA APML (t15:17)*
- c-myc Burkitt and other high grade NHL
- cyclin D1 mantle cell lymphoma (t11:14)
- bcl-2 follicular lymphoma (t14:18)
- MYD88 Waldenstrom's macroglobulinaemia (LPL)
- BRAF hairy cell leukaemia
 - *Some molecular tests are quantitative and can be used monitor disease

Molecular testing and next generation sequencing (NGS)

- Tests a suite of genes quickly e.g. myeloid panel.
- Depending on institution can be very expensive.
- Can be used to test for JAK2/CALR/MPL at once rather than sequentially in some institutions can be cost equivalent and efficient.
- Can't always diagnose myelodysplasia with certainty as clonal haematopoiesis of indeterminate potential (CHIP) is very common.
- Requires lots of expert interpretation.

Minimal Residual Disease (MRD) evaluation and monitoring

- Associated with increased incidence of relapse in ALL and AML.
- Gives prognostic information in these and other disorders, often incurable such as CLL, myeloma and hopefully informs treatment decisions e.g. more intensive therapy, allografting.
- Performed by
 - flow cytometry (as discussed above)
 - immunoglobulin rearrangements
 - quantitative PCR e.g PML-RARa (APML), NPM1 (AML).