Sleep Medicine and the role of Sleep Studies in Sleep Assessment

A/Professor Jeremy Goldin MBBS FRACP
Royal Melbourne Hospital
Breathe West
Mr RS

- 56y.o male, truck driver
- PHx of HTN (Rx with coversyl)
- BMI 32kg/m2
- Snorer
- worked for 30 years with excellent driving record and no “red flags”
- Referred to local sleep diagnostics group for a sleep study at request of employer
- Refreshing sleep
- Occasionally tired in pm (ESS 8/24)
Mr RS

• Home based level 2 study
 – AHI 20 per hour (mainly hypopnoeas in supine position)
 – REM AHI 33 per hour
 – 4%ODI – 8 per hour
 – Cortical arousal index 15 per hour
 – Sleep efficiency 83% with REM 17% and SWS 14%
 – SpO2 nadir 81% and TST with SpO2< 90% is 2 minutes
• “There is severe obstructive sleep apnoea in REM. Significant oxygen desaturations occurred. Sleep appeared fragmented. Periodic leg movements were not present.”

• “Recommend CPAP and if CPAP is not tolerated consider oral appliance therapy. Sleep physician referral could be considered.”

• “Untreated sleep apnoea is associated with increased risk of cardiovascular events, stroke and motor vehicle accidents. Driving should be avoided in untreated sleep apnoea”
Treatment

- Referral for CPAP
- Referral for Oral Appliance Therapy
- Reassurance
- Report to Vicroads/ Advise that cannot drive unless OSA is effectively treated
Mr RS

• Mr RP purchased Autotitrating PAP device (and mask) – paid $2400
• Device used less than 1 hour per night and subsequently ceased use
• Underwent a repeat sleep study at an accredited service – snoring without significant sleep disordered breathing
• I advised to cease CPAP, focus on weight loss and consider positional aid. Wife happy to trial ear plugs.
WHERE WERE THESE PATIENTS LET DOWN

- ABSENCE OF CLINICAL ASSESSMENT
- MODEL OF CARE
- ? QUALITY OF SLEEP STUDY
- LACK OF EVIDENCE BASED CARE AND ADVICE
- ? COMMERCIAL INTERESTS
- SLEEP APNOEA CENTRIC CARE
OUTLINE

• Overview of Sleep Neurobiology
• Sleep Assessment
• Sleep Investigations
• OSA – when to treat and when not to treat
• What to do with the non-compliant at risk patient
OUTLINE

• Overview of Sleep Neurobiology
• Hypersomnolence and OSA Driving Risk
• Sleep Assessment
• Sleep Investigations
• OSA – when to treat and when not to treat
• What to do with the non-compliant at risk patient
SLEEP REGULATION – OVERVIEW

- Monoaminergic neurons
- VLPO
- Extended VLPO
- Hypocretin
- Cholinergic
- REM
- Non REM

SLEEP
- GABA, adenosine, melatonin

WAKE
- ACH, histamine, NA, serotonin, dopamine, hypocretin
Circadian Rhythm Abnormalities

- Jet lag
- Shift work
- Delayed sleep-phase syndrome (DSPS)
- Advanced sleep-phase syndrome (ASPS)
- Irregular sleep–wake pattern
- Non-24-hour sleep–wake syndrome
OUTLINE

- Overview of Sleep Neurobiology
- Hypersomnolence and OSA Driving Risk
- Sleep Assessment
- Sleep Investigations
- OSA – when to treat and when not to treat
- What to do with the non-compliant at risk patient
Daytime sleepiness

Not enough sleep
- Lifestyle
- Shift work
- Jet lag
- Sleep interruptions
 - Eg young children

Sleep Disorders
- Sleep Breathing Disorders
- RLS/PLMD
- Narcolepsy/ Idiopathic hypersomnia
- Others
 - Circadian Rhythm Disorders
 - Drugs/Alcohol/pain syndromes
 - Neurological Disease
 - Chronic Medical Disease
 - Insomnia.
 - Parasomnias
 - Psychiatric disorders
EPWORTH SLEEPINESS SCALE

Use the following scale to choose the **most appropriate number** for each situation:

0 = would **never** doze
1 = **slight chance** of dozing
2 = **moderate chance** of dozing
3 = **high chance** of dozing

Chance of Dozing (0-3)

- Sitting and reading
- Watching TV
- Sitting, inactive in a public place (e.g. a theatre or a meeting)
- As a passenger in a car for an hour without a break
- Lying down to rest in the afternoon when circumstances permit
- Sitting and talking to someone
- Sitting quietly after a lunch without alcohol
- In a car, while stopped for a few minutes in the traffic

M.W. Johns 1990-97

- 0-5 Lower Normal Daytime Sleepiness
- 6-10 Higher Normal Daytime Sleepiness
- 11-12 Mild Excessive Daytime Sleepiness
- 13-15 Moderate Excessive Daytime Sleepiness
- 16-24 Severe Excessive Daytime Sleepiness
TABLE 2. Risk factors for EDS based on multiple logistic regression
ES, Effect size.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ES</th>
<th>(P)</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>10.6</td>
<td><0.001</td>
<td>6.85</td>
</tr>
<tr>
<td>Log BMI (kg/m(^2))</td>
<td>4.3</td>
<td><0.001</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+1 SD 1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+2 SD 2.10</td>
</tr>
<tr>
<td>Age</td>
<td>3.6</td>
<td><0.001</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+1 SD 0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+2 SD 0.38</td>
</tr>
<tr>
<td>Typical sleep duration</td>
<td>3.2</td>
<td>0.001</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+1 SD 0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+2 SD 0.58</td>
</tr>
<tr>
<td>Diabetes (glucose > 126)</td>
<td>2.3</td>
<td>0.019</td>
<td>1.87</td>
</tr>
<tr>
<td>Smoke</td>
<td>1.9</td>
<td>0.060</td>
<td>1.53</td>
</tr>
<tr>
<td>OHI > 15</td>
<td>1.2</td>
<td>0.255</td>
<td>1.70</td>
</tr>
</tbody>
</table>

Bixler et al. JCEM 2005
SLEEP SYMPTOMS ARE COMMON AND OFTEN NOT SPECIFIC

- Snoring is common – 50-80% of adult population
- Excessive daytime sleepiness has a wide differential diagnosis
- Apnoeic Events are commonly observed
- Nocturnal Awakenings may increase with age
- Nocturnal Choking – asthma, GORD, apnoeic event, nocturnal panic attacks
Snoring + EDS ≠ OSA
Degradation in Cognitive Performance in Sleep Deprivation With and Without Daily Nap (30 minutes)

- Sleep deprivation degrades cognitive performance.
- The sleep/performance system is sensitive to even brief amounts of sleep.
- A daily 30 minute nap improves performance when compared to total sleep deprivation.
People Get Used to the Impairment

OSA AND CRASH RISK

<table>
<thead>
<tr>
<th>Study name</th>
<th>Rate ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulgrew</td>
<td>1.220</td>
<td>0.920</td>
<td>1.618</td>
<td>1.381</td>
<td>0.167</td>
</tr>
<tr>
<td>Barbe</td>
<td>2.570</td>
<td>1.304</td>
<td>5.065</td>
<td>2.727</td>
<td>0.006</td>
</tr>
<tr>
<td>Shiomi</td>
<td>2.342</td>
<td>0.237</td>
<td>23.151</td>
<td>0.728</td>
<td>0.467</td>
</tr>
<tr>
<td>Horstmann</td>
<td>8.719</td>
<td>6.179</td>
<td>12.303</td>
<td>12.326</td>
<td>0.000</td>
</tr>
<tr>
<td>Lloberes</td>
<td>2.720</td>
<td>0.342</td>
<td>21.645</td>
<td>0.946</td>
<td>0.344</td>
</tr>
<tr>
<td>Findley 2000</td>
<td>6.195</td>
<td>0.373</td>
<td>102.896</td>
<td>1.272</td>
<td>0.203</td>
</tr>
<tr>
<td>George</td>
<td>1.306</td>
<td>0.791</td>
<td>2.157</td>
<td>1.043</td>
<td>0.297</td>
</tr>
<tr>
<td>Stooths</td>
<td>1.848</td>
<td>0.865</td>
<td>3.948</td>
<td>1.586</td>
<td>0.113</td>
</tr>
<tr>
<td>Haraldsson</td>
<td>1.551</td>
<td>0.641</td>
<td>3.754</td>
<td>0.973</td>
<td>0.331</td>
</tr>
<tr>
<td>Findley 1988</td>
<td>6.833</td>
<td>0.257</td>
<td>181.683</td>
<td>1.148</td>
<td>0.251</td>
</tr>
<tr>
<td></td>
<td>2.427</td>
<td>1.205</td>
<td>4.890</td>
<td>2.480</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Tregear et al. JCSM 2009
Factors that may increase crash risk in OSA

• Excessive Daytime Sleepiness
• Elevated BMI
• Sleep Restriction
• Shift Work
• Older Age
• Use of Hypnotics
Factors that may increase crash risk in OSA

- Excessive Daytime Sleepiness
- Elevated BMI
- Sleep Restriction
- Shift Work
- Older Age
- Use of Hypnotics
- ? AHI Value – although many studies have NOT found a correlation between AHI size and crash risk
Figure 3 Incidence of motor vehicle accidents (MVAs) per 1,000 individuals per year before and after continuous ...

![Bar chart showing incidence of motor vehicle accidents (MVAs) per 1,000 individuals per year before and after continuous positive airway pressure (CPAP) intervention.]
OUTLINE

• Overview of Sleep Neurobiology
• Hypersomnolence and OSA Driving Risk
• Sleep Assessment
• Sleep Investigations
• OSA – when to treat and when not to treat
• What to do with the non-compliant at risk patient
SLEEP ASSESSMENT

• Clinical Assessment is more important than the results of the sleep study.
• Treatment decisions in most cases can be determined either by the clinical assessment alone or together with the results of the sleep study.
• A sleep study alone in the majority of cases cannot drive treatment decisions.
HISTORY AND EXAMINATION

- Age and Gender
- Work – shift work, retired, regular day shift
- Do you have a problem with sleep?
- Comorbidities (HTN, DM, CVD, Thyroid disease etc...)
- Medications/ Smoking/ Etoh/ Caffeine
- Sleep/Wake times – sleep onset, sleep duration
- Nocturnal Awakenings and Cause (?Nocturia)
- Refreshing sleep
- Morning Headaches
- Snoring/ Observed Apnoeas/ Choking/ Dry Mouth
- Restless Legs/ Periodic Leg Movements/ Parasomnia
- Sleep paralysis/ hypnogogic hallucinations/ cataplexy
- Sleep Environment
- Menopause Status
- Mood/ Hx of Depression?
- Constipation, anosmia (if considering RBD)
- Epworth Sleepiness Score
HISTORY AND EXAMINATION

- BMI
- Mallampati Score
- ? Retrognathia
- ? Nasal Obstruction
- Neck Circumference
- Signs of Parkinsonism (RBD)
- Signs of Anaemia
- Signs of Thyroid Disease
STOP-BANG Sleep Apnea Questionnaire
Chung F et al Anesthesiology 2008 and BJA 2012

High risk of OSA: Yes 5 - 8
Intermediate risk of OSA: Yes 3 - 4
Low risk of OSA: Yes 0 - 2

<table>
<thead>
<tr>
<th>STOP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you SNORE loudly (louder than talking or loud enough to be heard through closed doors)?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Do you often feel TIRED, fatigued, or sleepy during daytime?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Has anyone OBSERVED you stop breathing during your sleep?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Do you have or are you being treated for high blood PRESSURE?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BANG</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI more than 35kg/m2?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AGE over 50 years old?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NECK circumference > 16 inches (40cm)?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GENDER: Male?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

TOTAL SCORE
OUTLINE

• Overview of Sleep Neurobiology
• Hypersomnolence and OSA Driving Risk
• Sleep Assessment
• Sleep Investigations
• OSA – when to treat and when not to treat
• What to do with the non-compliant at risk patient
SLEEP STUDIES

• There are 4 levels of sleep studies – choosing the wrong sleep study may result in poor patient outcome

• Sleep Studies consist of multiple signals all of which are prone to artefact. Artefact can significantly alter the results leading to incorrect diagnosis.

• Different models of care may produce very different results and different recommendations
Portable vs In-Lab Studies

Portable Studies

• PROS
 – more accessible and cheaper
 – performed at home
 – High sensitivity in diagnosing severe OSA in moderate-high risk individual

• CONS
 – variability in quality control and models of care
 – signal loss and artefact
 – many providers are not ASA/NATA accredited
Portable vs In-Lab Studies

In-Lab Studies

• PROS
 – attended studies – signal loss infrequent and artefact better controlled
 – most labs are ASA/NATA accredited
 – can identify a range of sleep abnormalities

• CONS
 – less accessible and more expensive
 – requirement for overnight hospital stay
PROBLEMS WITH AHI

• Increased sensitivity of nasal pressure signal has resulted in increase number of events present
• Inter and Intra-laboratory Variability – technology used, experience of staff, time saving measures (automatic analysis), signal quality
• Intra-patient variability – night to night. Position, percentage REM, effects of alcohol, medication, smoking, weight
IMPLICATIONS

• Over diagnosis of OSA
 – Inappropriate prescription of CPAP therapy
 – Failure to recognise other sleep related problems that are the cause for the patient’s symptoms

• Clinical trials may lack validity
MSLT and MWT

• Multiple Sleep Latency Test (MSLT) – test to assess for pathological hypersomnolence (mean sleep latency < 8 minutes)

• Maintenance of Wakefulness Test (MWT) – test to assess ability to maintain vigilance (mean sleep latency > 25 minutes *)
OUTLINE

• Overview of Sleep Neurobiology
• Hypersomnolence and OSA Driving Risk
• Sleep Assessment
• Sleep Investigations
• OSA – when to treat and when not to treat
• What to do with the non-compliant at risk patient
WHAT IS OSA?

Obstructive Sleep Apnoea (OSA) is the repetitive complete or partial cessation of respiration due to obstruction of the upper airway leading to changes in arterial oxygen saturations and/or sleep micro-architecture.
• The consequences and management of OSA may differ in childhood, adulthood and the elderly

• OSA often co-exists with other sleep conditions (>50% of cases diagnosed) and in many instances may not cause symptoms or long term sequelae and therefore may not require active treatment
Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Heizner et al.
Non-fatal cardiovascular events increased in patients with severe untreated OSA: 12 year clinic follow-up

Marin et al. LANCET 2005
Higher rate of stroke and death in clinic patients with OSA than those without OSA

Yaggi et al NEJM 2005

SHHS STROKE
Redline et al. AJRCCM 2010
Unadjusted Kaplan-Meier survival curves for AHI clinical categories, by sex and event type

Gottlieb, D. J. et al. Circulation 2010;122:352-360
TABLE 2. Adjusted odds ratios for glucose intolerance based on fasting and 2-hour glucose levels, Sleep Heart Health Study, 1994–1999* †

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Fasting glucose level (n = 2,656)</th>
<th>2-hour glucose level (n = 1,930)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio</td>
<td>95% confidence interval</td>
</tr>
<tr>
<td>Respiratory disturbance index (no. of events/hour)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><5.0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5.0–14.9</td>
<td>1.27 0.98, 1.64</td>
<td>1.09 0.88, 1.35</td>
</tr>
<tr>
<td>≥15.0</td>
<td>1.46 1.09, 1.97</td>
<td>1.44 1.11, 1.87</td>
</tr>
<tr>
<td>p for linear trend</td>
<td>0.0090</td>
<td>0.0096</td>
</tr>
<tr>
<td>Average oxyhemoglobin saturation during sleep (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥95.72</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>94.57–95.71</td>
<td>1.52 1.05, 2.20</td>
<td>1.16 0.88, 1.53</td>
</tr>
<tr>
<td>93.32–94.56</td>
<td>1.75 1.21, 2.53</td>
<td>1.14 0.86, 1.52</td>
</tr>
<tr>
<td><93.32</td>
<td>1.95 1.34, 2.84</td>
<td>1.40 1.05, 1.88</td>
</tr>
<tr>
<td>p for linear trend</td>
<td>0.0007</td>
<td>0.0321</td>
</tr>
<tr>
<td>Percentage of sleep time with oxyhemoglobin saturation <90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>0.01–0.25</td>
<td>1.14 0.80, 1.61</td>
<td>1.08 0.83, 1.41</td>
</tr>
<tr>
<td>0.26–2.16</td>
<td>1.41 1.01, 1.98</td>
<td>1.32 1.01, 1.74</td>
</tr>
<tr>
<td>≥2.17</td>
<td>1.56 1.10, 2.20</td>
<td>1.32 1.00, 1.75</td>
</tr>
<tr>
<td>p for linear trend</td>
<td>0.0053</td>
<td>0.0246</td>
</tr>
<tr>
<td>Arousal index (no. of events/hour)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><12.36</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>12.36–17.12</td>
<td>0.92 0.66, 1.28</td>
<td>0.87 0.67, 1.14</td>
</tr>
<tr>
<td>17.13–24.17</td>
<td>1.23 0.90, 1.69</td>
<td>1.00 0.76, 1.30</td>
</tr>
<tr>
<td>≥24.18</td>
<td>1.25 0.91, 1.71</td>
<td>1.23 0.94, 1.61</td>
</tr>
<tr>
<td>p for linear trend</td>
<td>NS‡</td>
<td>NS</td>
</tr>
</tbody>
</table>
OSA – Systemic Hypertension

- Nieto et al. JAMA 2000; 283: 1829 – 1836
 - Cross sectional analysis of participants in SHHS – 6132 subjects
 - Mean sBP and dBP and prevalence of HTN increased significantly with increasing SDB measures
 - AHI > 30 – OR 1.37 (1.03 – 1.83)
 - TST with SpO2 < 90% - OR 1.46 (1.12 – 1.88)
• Peppard et al. NEJM 2000; 342(19): 1378 – 1384
 – Wisconsin Sleep Cohort Study – 709 patients
 – AHI > 15 – OR 2.89 (1.46 – 5.64)
 – Dose response relationship between SDB and the presence of HTN 4 years later independent of any known confounding factors.
Cumulative Event Curve of the Primary End Point.

No. at Risk

<table>
<thead>
<tr>
<th></th>
<th>CPAP</th>
<th>Usual care</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1346</td>
<td>1341</td>
</tr>
<tr>
<td>12</td>
<td>1222</td>
<td>1211</td>
</tr>
<tr>
<td>24</td>
<td>1118</td>
<td>1108</td>
</tr>
<tr>
<td>36</td>
<td>754</td>
<td>727</td>
</tr>
<tr>
<td>48</td>
<td>482</td>
<td>499</td>
</tr>
<tr>
<td>60</td>
<td>278</td>
<td>290</td>
</tr>
<tr>
<td>72</td>
<td>146</td>
<td>103</td>
</tr>
<tr>
<td>84</td>
<td>146</td>
<td>103</td>
</tr>
</tbody>
</table>

P = 0.34
Conclusions:
CPAP treatment improved both subjectively and objectively measured sleepiness, especially in individuals with severe OSA (AHI > 30). CPAP use resulted in mild, transient improvement in the most sensitive measures of executive and frontal-lobe function for those with severe disease, which suggests the existence of a complex OSA-neurocognitive relationship.
Forest plot for weight.

Luciano F Drager et al. Thorax 2015;70:258-264
Adaptive and Maladaptive processes induced by intermittent hypoxia

(Rosenzweig et al. J Physiol 2013)

Model of Sleep Apnoea

- Transgenic TLR2-luc-GFP C57Bl6 mice (backcrossed to an albino background for more precise quantification)
- Imaging bioluminescence directly after intermittent hypoxia every 2 days
- To investigate Toll-like-receptors (TLR) implicated in neurogenesis and neuroinflammation (recently in Alzheimer’s dementia)
Sleep apnea may offer unusual protection for heart attack patients

Date: January 2, 2013

Source: American Technion Society

Summary: Researchers at the Technion have found that heart attack patients with breathing disorders such as sleep apnea may benefit from mild-moderate sleep-disordered breathing. The findings could suggest ways to rebuild damaged heart tissue.
OSA CHALLENGES

• Determining whether OSA is a bystander or part of the problem/presentation
• Asymptomatic individuals where the main issue is the noise pollution of snoring
• OSA in the elderly – often a bystander and it is unknown its significance
Taking a Pragmatic Approach in an Occupational Setting
RED FLAGS – ESS>10, BMI>35Kg/m2, average sleep time <6 hours, night shifts, age>60y.0

AHI < 15
Symptomatic: consider other causes of Sx
Asymptomatic: reassurance lifestyle

AHI 15 - 30
Asymptomatic & No red flags: offer trial of CPAP
Asymptomatic or red flags: offer trial of CPAP
Symptomatic: discuss other Rx, lifestyle measures and annual review

AHI > 30
Symptomatic or red flags: CPAP trial
CPAP trial -ve: May not be fit to drive or operate machinery
CPAP trial +ve: Offer other treatments
Annual Review -ve: Offer other treatments
Annual Review +ve: Arrange MWT
OUTLINE

• Overview of Sleep Neurobiology
• Hypersomnolence and OSA Driving Risk
• Sleep Assessment
• Sleep Investigations
• OSA – when to treat and when not to treat
• What to do with the non-compliant at risk patient
Medico-Legal Responsibilities

• Are our “rules” generalizable to every case
• Variability in quality in models of care – who takes on the medico-legal risk for the patient and for the community
• Diagnostic Accuracy and Cost of Treatments
• Non-compliant or poorly complaint patients – who is responsible (company, clinician or individual)
CONCLUSIONS

• OSA is a risk factor for MVA, however it is more complex than AHI
• Role of Sleep Studies is to add to the clinical assessment and they should NOT be used alone to make treatment decisions
• Not all sleep studies are the same – quality and models of care differ and that has consequences
• Treat severe OSA and those with moderate OSA who are either symptomatic (from their OSA) or have "red flags" with CPAP
• Non-compliant (sub-optimally compliant) or untreated “at risk” patients should be followed up with Maintenance of Wakefulness Test (MWT)
• Always consider other causes for patient’s symptoms
• Do you “ground” patients while they are waiting for their appointments/ sleep studies?
QUESTIONS?