Endocrine Investigations

A/Prof Shane Hamblin

Head of Endocrinology & Diabetes

Western Health

Areas to be covered

- Diabetes
- Thyroid
- Adrenal
- Pituitary
- Osteoporosis

Endocrinology Investigations 101

Footer Text

Principles of endocrine investigations

- Clinical suspicion first
- Repeat abnormal tests to confirm
- Biochemical interference is not uncommon
- Speak to the lab if tests are unusual / confusing
- Only then proceed to localisation (e.g. MRI pituitary)

Diabetes

Traditional laboratory diagnostic screening tests

 Measurement of fasting plasma glucose

2 tests glucose >7 mmol/L

- Random BGL ≥11.0 mmol/L with diabetic symptoms
- 3. Oral glucose tolerance test (oGTT) only if:

fasting glucose in grey zone: 5.5-6.9 mmol/L

or

pregnancy (Gestational DM screen)

NB Fingerprick BGL must be confirmed with laboratory BGL tests because of coefficient of variation/accuracy

Oral GTT has poor reproducibility

Only 65% people will have a similar result if a second oGTT is repeated 6 weeks after the first

HbA1c for *diagnosis* of diabetes

Interpretation of HbA1c for diagnosis

Diabetes status	HbA1c level
Non-diabetic	< 6.1% (43 mmol/mol)
Impaired glucose metabolism	6.1 - 6.4% (43-46 mmol/mol)
Diabetes mellitus	>= 6.5% (48 mmol/mol)

MEDICARE: HbA1c for diagnosis

HbA1c has now been recognised by Medicare as a diagnostic test.

MEDICARE: Frequency of HbA1c testing

As a diagnostic test, up to 1 test in a 12 month period is rebatable by Medicare. For monitoring established diabetes the limit of 4 tests per year remains unchanged.

Footer Text

WHO 2011 HbA1c

A value less than 6.5% does not exclude diabetes diagnosed using glucose tests. The expert group concluded that there is currently insufficient evidence to make any formal recommendation on the interpretation of HbA1c levels below 6.5%.

HbA1c 6.5% = 48 mmol/mol

GRADE quality of evidence: moderate GRADE strength of recommendation: conditional

Some of the factors that influence HbA1c and its measurement*. Adapted from Gallagher et al (24)

1. Erythropoiesis

<u>Increased HbA1c:</u> iron, vitamin B12 deficiency, decreased erythropoiesis.
<u>Decreased HbA1c:</u> administration of erythropoietin, iron, vitamin B12, reticulocytosis, chronic liver disease.

2. Altered Haemoglobin

Genetic or chemical alterations in haemoglobin: haemoglobinopathies, HbF, methaemoglobin, may increase or decrease HbA1c.

3. Glycation

Increased HbA1c: alcoholism, chronic renal failure, decreased intraerythrocyte pH.

<u>Decreased HbA1c:</u> aspirin, vitamin C and E, certain haemoglobinopathies, increased intra-erythrocyte pH.

Variable HbA1c: genetic determinants.

4. Erythrocyte destruction

Increased HbA1c: increased erythrocyte life span: Splenectomy.
Decreased A1c: decreased erythrocyte life span: haemoglobinopathies, splenomegaly, rheumatoid arthritis or drugs such as antiretrovirals, ribavirin and dapsone.

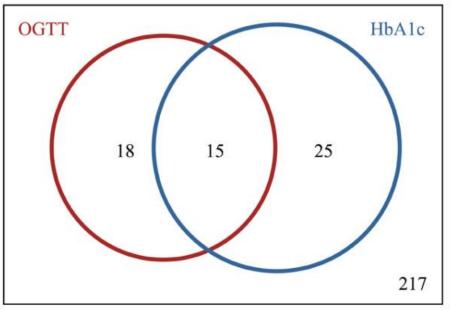
Assays

Increased HbA1c: hyperbilirubinaemia, carbamylated haemoglobin, alcoholism, large doses of aspirin, chronic opiate use.

Variable HbA1c: haemoglobinopathies.

Decreased HbA1c: hypertriglyceridaemia.

Some of the above interfering factors are "invisible" in certain of the available assays.


Situations where HbA1c is not appropriate for diagnosis of diabetes:

- ALL children and young people
- Patients of any age suspected of having Type 1 diabetes.
- Patients with symptoms of diabetes for less than 2 months.
- Patients at high diabetes risk who are acutely ill (e.g. those requiring hospital admission)
- Patients taking medication that may cause rapid glucose rise e.g. steroids, antipsychotics
- Patients with acute pancreatic damage, including pancreatic surgery.
- In pregnancy
- Presence of genetic, haematologic and illness-related factors that influence HbA1c and its measurement - see Annex 1 from WHO report



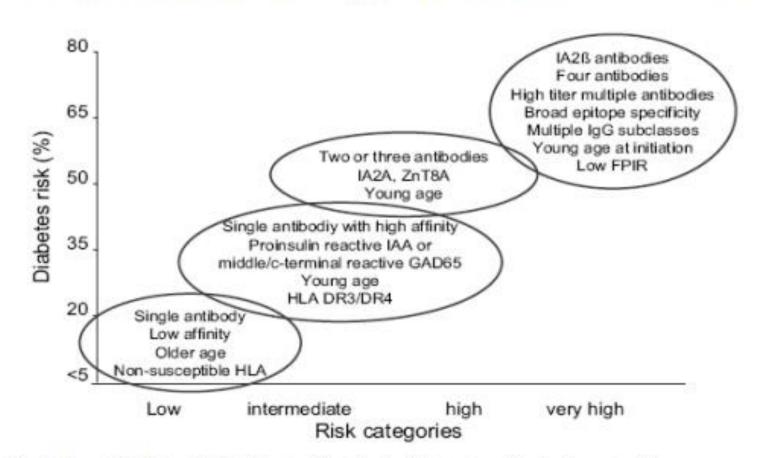
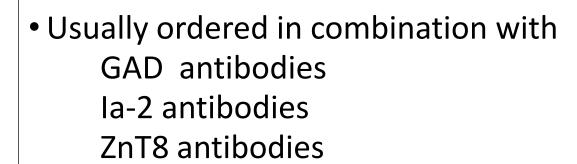
Correlation between HbA1c & oGTT Western Health

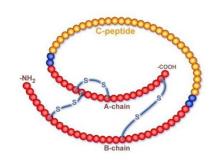
a Diabetes mellitus

b Intermediate hyperglycaemia

Antibodies and Type 1 diabetes

Genetic Markers, Serological Auto Antibodies and Prediction of Type 1 Diabetes


Fig. 2. Type 1 diabetes (T1D) risk stratification by islet autoantibody characteristics.

C-peptide

- Useful in cases where uncertainty exists whether Type 1 or Type 2 diabetes
 eg LADA: latent autoimmune diabetes of adults
- Not a diagnostic test for diabetes
- Not to be used as a routine test

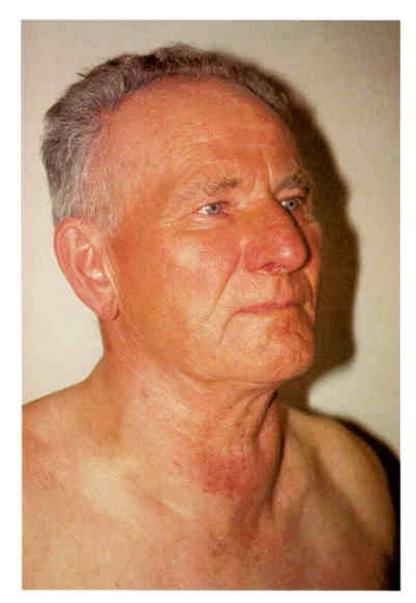
Footer Text

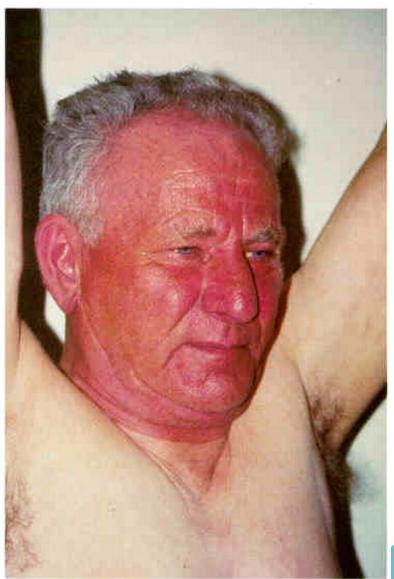
Investigation of hypoglycemia (non-diabetic)

- Confirm Whipple's Triad
 - Hypoglycemic Symptoms
 - Documented low BGL at time of symptoms
 - Resolution of symptoms when the glucose is raised to normal
- Capture episode of hypoglycemia
 - Assess insulin & C-peptide
 - May be done co-incidentally or with a 72 hour fast

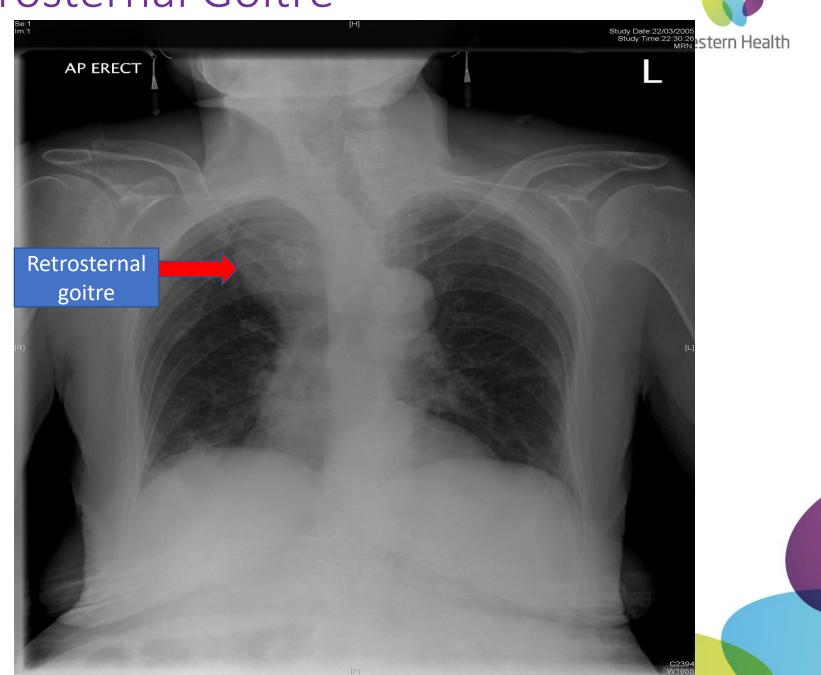
Date	24 th April	29 th April	29 th April	30 th April	30 th April
Time	0815	1600	2200	0400	0505
Blood glucose mmol/L	2.6	5.2	3.3	2.2	1.8
Insulin mIU/L (2.5-11.1)	40.3		16.9	27.2	29.8
C-peptide nmol/L (0.33- 1.47)	2.29	3.26	1.47	1.74	1.81

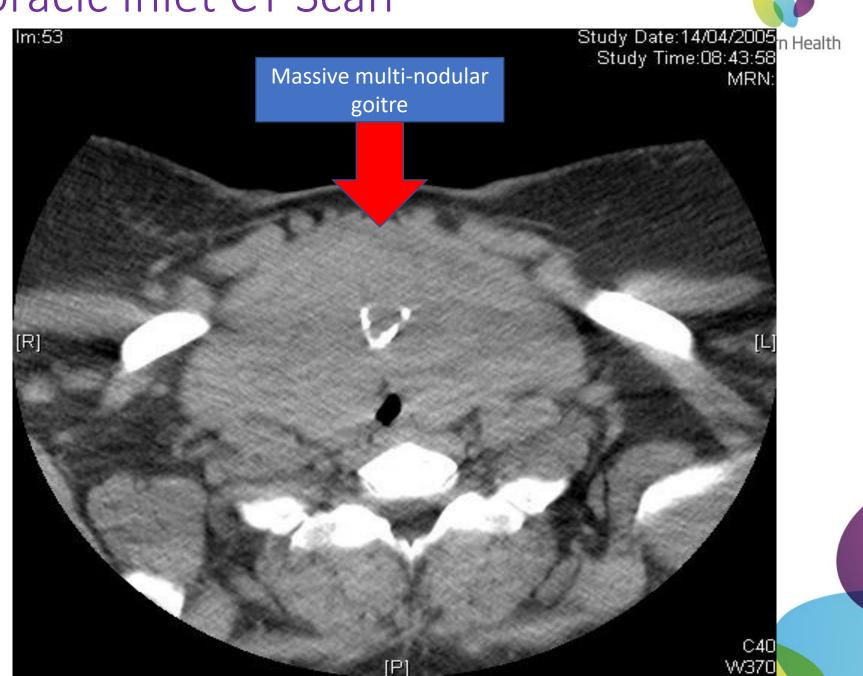
Thyroid


Thyroid Investigations


- 1. Clinical examination still important (nodules, goitre, signs of obstruction, nodes, thyroid eye signs, reflexes etc etc)
- 2. CXR/CT Thoracic inlet
- 3. Thyroid Ultrasound
- 4. Technetium (Tc-99m) pertechnetate thyroid nuclear scan
- 5. Other: I131 scans and PET scans for thyroid cancer
- 6. TFTs, thyroid antibodies, TSH receptor antibodies(TRABs), Thyroid Stimulating Immunoglobulins (TSI)
- 7. FNA cytology

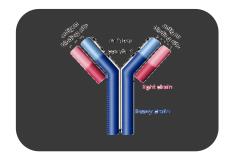
Footer Text


Positive Pemberton's sign



Retrosternal Goitre

Thoracic Inlet CT Scan


Investigation of goitre

Thyroid Function Tests

Thyroid ultrasound

alth

Investigation of goitre

Other imaging in selected cases:

CT scan (no contrast if TSH low)

Nuclear scan

Thyroid nodules

Palpable 5% ¹

Ultrasound 25% ¹

Much higher in older age groups ²

Much higher in iodine deficient areas ²

Thyroid abnormalities by ultrasound

(German population: marginal iodine sufficiency)

Figure 3 Increasing occurrence of thyroid nodules with age by gender and in total.

Thyroid Ultrasounds & Nuclear Scans: Western Health will the result make a clinical difference?

Ultrasound

Is this clinical nodule a simple cyst or not?

Is this a solitary nodule or part of a MNG?

Has this nodule increased in size over time?

Amiodarone (blood flow)

Nuclear scan

Is this a 'hot' nodule? (done when TSH low)

Can I use I¹³¹ treatment?

Specialist thyroid cancer management

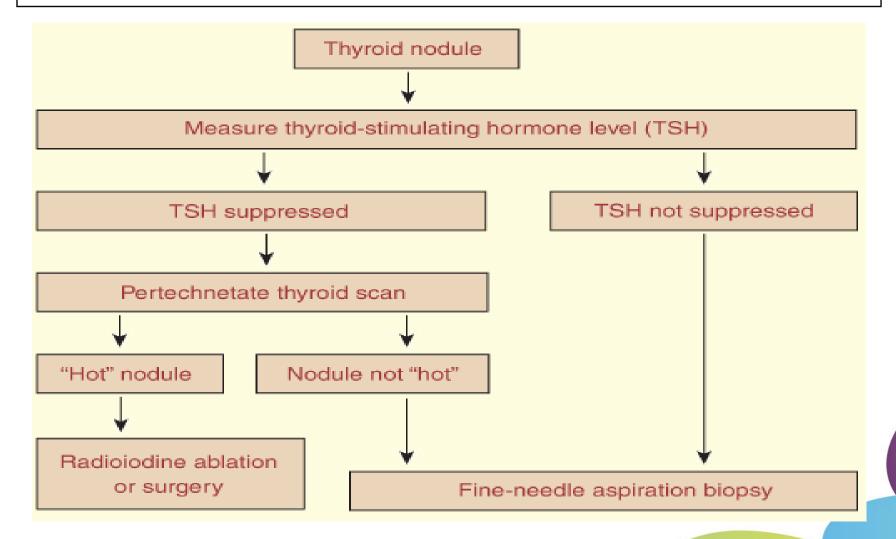
Amiodarone (uptake)

Practical Points

Check if patient has been exposed to contrast agents within past month before ordering a thyroid nuclear scan (as tracer may not get into the thyroid)

Avoid i.v. contrast (if possible) where a patient is known to have:

Multinodular goitre

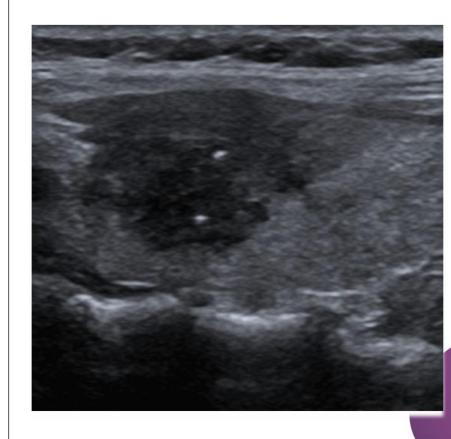

Suppressed TSH

Thyrotoxicosis history

as hyperthyroidism may be triggered (iv contrast has lots of iodine)

Thyroid Nodule Investigation: Suggested Approach

Mackenzie E. & Mortimer R. MJA 2004; 180 (5): 242-247


Thyroid Ultrasound: "Concerning" features in a nodule

alth

Punctate calcification, hypoechoic, and irregular or blurred margins suggestive of thyroid papillary carcinoma

Ultrasound unlikely to differentiate benign from malignant

Dominant thyroid nodule in a multinodular goitre is probably as likely to harbour a malignancy as a solitary nodule (approx. 5% chance)

Footer Text

Thyroid Imaging Reporting and Data System: TIRADS

ACR TI-RADS

COMPOSITION

(Choose 1)

Cystic or almost 0 points completely cystic

Spongiform 0 points

1 point

Mixed cystic and solid

Solid or almost 2 points completely solid

ECHOGENICITY

(Choose 1)

Anechoic 0 points

Hyperechoic or 1 point isoechoic

Hypoechoic 2 points

Very hypoechoic

2 points 3 points

SHAPE

(Choose 1)

Wider-than-tall 0 points
Taller-than-wide 3 points

MARGIN

(Choose 1)

Smooth 0 points III-defined 0 points

Lobulated or 2 points irregular

Extra-thyroidal 3 points

extension

ECHOGENIC FOCI

(Choose All That Apply)

None or large 0 points

comet-tail artifacts

Macrocaldifications 1 point

Peripheral (rim) 2 points calcifications

Punctate echogenic 3 points

foci

Add Points From All Categories to Determine TI-RADS Level

0 Points

TR1

Benign No FNA

2 Points

TR2

Not Suspicious No FNA

3 Points

TR3

Mildly Suspicious FNA if ≥ 2.5 cm Follow if ≥ 1.5 cm

4 to 6 Points

TR4

Moderately Suspicious FNA if ≥ 1.5 cm Follow if ≥ 1 cm

TR5

FNA if ≥ 1 cm Follow if ≥ 0.5 cm*

7 Points or More

COMPOSITION

Spongiform: Composed predominantly (>50%) of small cystic spaces. Do not add further points Anechoic: Appl completely cys

spaces. Do not add further points for other categories. Mixed cystic and solid: Assign

points for predominant solid component.

Assign 2 points if composition cannot be determined because of calcification.

ECHOGENICITY

Anechoic: Applies to cystic or almost completely cystic nodules.

Hyperechoic/isoechoic/hypoechoic: Compared to adjacent parenchyma.

Very hypoechoic: More hypoechoic than strap muscles.

Assign 1 point if echogenicity cannot be determined.

SHAPE

Taller-than-wide: Should be assessed on a transverse image with measurements parallel to sound beam for height and perpendicular to sound beam for width.

This can usually be assessed by visual inspection.

MARGIN

Lobulated: Protrusions into adjacent tissue.

Irregular: Jagged, spiculated, or sharp angles.

Extrathyroidal extension: Obvious invasion = malignancy.

Assign 0 points if margin cannot be determined.

ECHOGENIC FOCI

Large comet-tail artifacts: V-shaped, >1 mm, in cystic components.

Macrocalcifications: Cause acoustic shadowing.

Peripheral: Complete or incomplete along margin.

Punctate echogenic foci: May have small comet-tail artifacts.

*Refer to discussion of papillary microcarcinomas for 5-9 mm TR5 nodules.

Hypothyroidism Investigations Free T4, Free T3, TSH

Anti-TPO (thyroid peroxidase) antibodies

Anti-thyroglobulin antibodies

.....and that's it for the vast majority of cases

Thyroid ultrasound for a patient with hypothyroidism or positive anti thyroid antibodies is <u>NOT</u> needed in most cases

Subclinical Hypothyroidism is Common

Whickham study ¹

TSH > 6mU/L (Excluded overt hypothyroidism)

7.5% in women 2.8% in men

Detroit ²

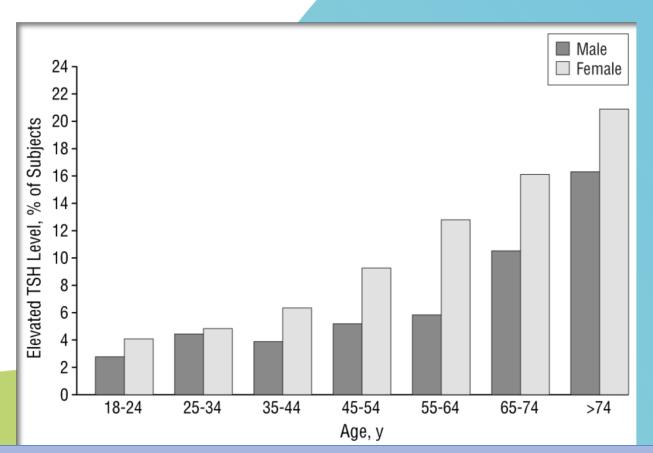
8.5% in women 4.4% in men

Framingham ³ [>60yo]

16.9% in women 8.2% in men

Colorado Health Fair 4

8.5% overall: women > men in all decades


¹ Tunbridge et al Clin Endocrinol 1977

³ Sāwin et al JAMA 1979

² Bagchi et al Arch Int Med 1990

⁴ Canaris et al Arch Int Med 2000

The Colorado Thyroid Disease Prevalence Study: 'Hypothyroidism'

Hypothyroidism (defined by a single high TSH in this study) ranged from 4% to 21% in women and from 3% to 16% in men

Subclinical Hypothyroidism

Whickham study follow-up

Overt hypothyroidism risk over 20 years of follow-up

TSH mU/L	TPOAb[-]	TPOAb[+]
2	3%	17%
5	17%	55%
10	44%	83%

Prevalence of thyroid antibodies

	Thyro-peroxidase autoantibodies (anti TPO)	Thyroglobulin autoantibodies (anti Tg)	TSH receptor antibody (TRAB)
General population	8–27% (11% without history of thyroid disease in an Australian cohort ¹)	5–20% (5% without history of thyroid disease in an Australian cohort ¹)	1–2% (significance of these positive values remains to be determined)
Graves' disease	50–80%	50–70%	90–99%²
Chronic autoimmune thyroiditis	90–100%	80–90%	10–20%

¹The Busselton Thyroid Study O'Leary PC, et al. Clin Endo (Oxf) 2006;64:97–104

Second generation TSH receptor antibody assays using human TSH receptor coated tubes have a sensitivity of 90–99% and specificity of 95–100% for Graves' disease Matthews DC et al Eur J Intern Med 2011;22:213–6

Role of thyroid auto-antibody testing

- Auto-immune thyroiditis –
 Hashimoto's thyroiditis (Anti-Thyroid Peroxidase and Anti-Thyroglobulin antibodies)
- TSH receptor antibodies: stimulatory (Graves'), but can also rarely act as blocking antibodies (Hashimoto's)
- Spectrum of disease from hypothyroidism to hyperthyroidism (& back again!)

Investigation of hyperthyroidism

- TSH Receptor antibodies (TRAB) (or TSI: thyroid stimulating immunoglobulin)
- Thyroid nuclear scan
 (not needed if clinical features of Graves' disease clearly present)

Possible findings:

- Diffusely increased uptake
- 'Hot' nodule
- Toxic multi nodular goitre
- Reduced uptake (sub-acute thyroiditis)

	High T ₄	Normal T ₄	Low T ₄
High TSH	 in vivo or in vitro artefact pituitary hyperthyroidism (TSHoma) thyroid hormone resistance 	 mild thyroid failure (primary) (also called subclinical hypothyroidism and diminished thyroid reserve) 	primary hypothyroidism
Normal TSH	 as above sampling within 6 hours of thyroxine dose 	 normal (in patients taking thyroxine, TSH more than 3 mU/L may indicate subtle under-replacement) 	 pituitary or hypothalamic hypothyroidism severe nonthyroidal illness
Low TSH	hyperthyroidism (for this diagnosis, TSH must be suppressed rather than just low)	subclinical hyperthyroidism subtle thyroxine over- replacement thyroid autonomy (multinodular goitre or autonomous functioning thyroid nodule) nonthyroidal illness pituitary or hypothalamic hypothyroidism on therapy	pituitary or hypothalamic hypothyroidism severe nonthyroidal illness

	High T ₄	Normal T ₄	Low T ₄	
High TSH	 in vivo or in vitro artefact pituitary hyperthyroidism (TSHoma) thyroid hormone resistance 	 mild thyroid failure (primary) (also called subclinical hypothyroidism and diminished thyroid reserve) 	primary hypothyroidism	
Normal TSH	as above sampling within 6 hours of thyroxine dose	 normal (in patients taking thyroxine, TSH more than 3 mU/L may indicate subtle under-replacement) 	pituitary or hypothalamic hypothyroidism severe nonthyroidal illness	
Low TSH • hyperthyroidism (for this diagnosis, TSH must be suppressed rather than just low)		subclinical hyperthyroidism subtle thyroxine over- replacement thyroid autonomy (multinodular goitre or autonomous functioning thyroid nodule) nonthyroidal illness pituitary or hypothalamic hypothyroidism on therapy	 pituitary or hypothalamic hypothyroidism severe nonthyroidal illness 	

	High T ₄	Normal T ₄	Low T ₄
High TSH	 in vivo or in vitro artefact pituitary hyperthyroidism (TSHoma) thyroid hormone resistance 	 mild thyroid failure (primary) (also called subclinical hypothyroidism and diminished thyroid reserve) 	primary hypothyroidism
Normal TSH	as above sampling within 6 hours of thyroxine dose	 normal (in patients taking thyroxine, TSH more than 3 mU/L may indicate subtle under-replacement) 	pituitary or hypothalamic hypothyroidism severe nonthyroidal illness
Low TSH	hyperthyroidism (for this diagnosis, TSH must be suppressed rather than just low)	subclinical hyperthyroidism subtle thyroxine over- replacement thyroid autonomy (multinodular goitre or autonomous functioning thyroid nodule) nonthyroidal illness pituitary or hypothalamic hypothyroidism on therapy	pituitary or hypothalamic hypothyroidism severe nonthyroidal illness

	High T ₄	Normal T ₄	Low T ₄
High TSH	 in vivo or in vitro artefact pituitary hyperthyroidism (TSHoma) thyroid hormone resistance 	 mild thyroid failure (primary) (also called subclinical hypothyroidism and diminished thyroid reserve) 	primary hypothyroidism
Normal TSH	as above sampling within 6 hours of thyroxine dose	 normal (in patients taking thyroxine, TSH more than 3 mU/L may indicate subtle under-replacement) 	 pituitary or hypothalamic hypothyroidism severe nonthyroidal illness
Low TSH	hyperthyroidism (for this diagnosis, TSH must be suppressed rather than just low)	subclinical hyperthyroidism subtle thyroxine over- replacement thyroid autonomy (multinodular goitre or autonomous functioning thyroid nodule) nonthyroidal illness pituitary or hypothalamic hypothyroidism on therapy	pituitary or hypothalamic hypothyroidism severe nonthyroidal illness

	High T ₄	Normal T ₄	Low T ₄	
High TSH	 in vivo or in vitro artefact pituitary hyperthyroidism (TSHoma) thyroid hormone resistance 	 mild thyroid failure (primary) (also called subclinical hypothyroidism and diminished thyroid reserve) 	primary hypothyroidism	
Normal TSH	 as above sampling within 6 hours of thyroxine dose 	 normal (in patients taking thyroxine, TSH more than 3 mU/L may indicate subtle under-replacement) 	 pituitary or hypothalamic hypothyroidism severe nonthyroidal illness 	
Low TSH	hyperthyroidism (for this diagnosis, TSH must be suppressed rather than just low)	subclinical hyperthyroidism subtle thyroxine over- replacement thyroid autonomy (multinodular goitre or autonomous functioning thyroid nodule) nonthyroidal illness pituitary or hypothalamic hypothyroidism on therapy	 pituitary or hypothalamic hypothyroidism severe nonthyroidal illness 	

	High T ₄	Normal T ₄	• primary hypothyroidism	
High TSH	 in vivo or in vitro artefact pituitary hyperthyroidism (TSHoma) thyroid hormone resistance 	 mild thyroid failure (primary) (also called subclinical hypothyroidism and diminished thyroid reserve) 		
Normal TSH	as above sampling within 6 hours of thyroxine dose	 normal (in patients taking thyroxine, TSH more than 3 mU/L may indicate subtle under-replacement) 	 pituitary or hypothalamic hypothyroidism severe nonthyroidal illness 	
Low TSH	hyperthyroidism (for this diagnosis, TSH must be suppressed rather than just low)	subclinical hyperthyroidism subtle thyroxine over- replacement thyroid autonomy (multinodular goitre or autonomous functioning thyroid nodule) nonthyroidal illness pituitary or hypothalamic hypothyroidism on therapy	pituitary or hypothalamic hypothyroidism severe nonthyroidal illness	

Thyroid function test interpretation -practical points

Always use *clinical* judgement

If TSH low, check T4 and T3

If TSH high, check T4 and T3

Remember in severe illness: TFTs 'non steady state'

If in doubt call the laboratory

Multiple sclerosis

- If your patient has MS.....
- Check if they are taking high dose **BIOTIN**

Biotin & TFTs

- Spurious result due to lab artefact
- Assay dependent (not all assays): Biotin interferes with the assay test performance
- May affect TSH, FT4, FT3, TSH Receptor Antibodies (LH,FSH and possibly others)
- Patient may appear to have "Graves' disease"
- Effect disappears within 3 days of ceasing Biotin

Adrenal

Adrenal Incidentaloma

4.4% general population high resolution CT¹

10% older population²

0.4% childhood & adolescence³

¹J Endocrinol Invest. 2006;29(4):298

²Eur J Endocrinol 2003; 149 273-285

³J Pediatric Surgery1997; 32 (6) 911-915

Adrenal Incidentaloma

Table 3. Characteristics of Adrenal Incidentalomas on Imaging (Imaging Phenotype).*				
Variable	Adrenocortical Adenoma	Adrenocortical Carcinoma	Pheochromocytoma	Metastasis
Size	Small, usually ≤3 cm in diameter	Large, usually >4 cm in diameter	Large, usually >3 cm in diameter	Variable, frequently <3 cm
Shape	Round or oval, with smooth margins	Irregular, with unclear margins	Round or oval, with clear margins	Oval or irregular, with unclear margins
Texture	Homogeneous	Heterogeneous, with mixed densities	Heterogeneous, with cystic areas	Heterogeneous, with mixed densities
Laterality	Usually solitary, unilateral	Usually solitary, unilateral	Usually solitary, unilateral	Often bilateral
Attenuation (density) on unenhanced CT	≤10 Hounsfield units	>10 Hounsfield units (usually >25)	>10 Hounsfield units (usually >25)	>10 Hounsfield units (usually >25)
Vascularity on contrast-en- hanced CT	Not highly vascular	Usually vascular	Usually vascular	Usually vascular
Rapidity of washout of contrast medium	≥50% at 10 minutes	<50% at 10 minutes	<50% at 10 minutes	<50% at 10 minutes
Appearance on MRI†	Isointense in relation to liver on T ₂ -weighted image	Hyperintense in relation to liver on T ₂ -weighted image	Markedly hyperintense in relation to liver on T ₂ -weighted image	Hyperintense in relation to liver on T ₂ -weight- ed image
Necrosis, hemorrhage, or calcifications	Rare	Common	Hemorrhage and cystic areas common	Occasional hemorrhage and cystic areas
Growth rate	Usually stable over time or very slow (<1 cm per year)	Usually rapid (>2 cm per year)	Usually slow (0.5 cm to 1.0 cm per year)	Variable, slow to rapid

- If Hounsfield units <10 and appearance is not worrying and size < 4 cm
- Check functional status
 - ARR
 - 24h Urinary Catecholamines
 - 1 mg Dexamethasone suppression test
- Repeat adrenal CT scan in 6 months
- Then annual CT scans for 1-2 years
- Hormone re-evaluation annually for 5 years

Investigation adrenal incidentaloma

Investigation of possible primary hyperaldosteronism (Conn's syndrome)

Use drugs which do not interfere with Aldosterone or renin if possible:

- verapamil
- prazosin
- hydralazine
- moxonidine

Case Detection, Diagnosis, and Treatment of Patients with Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline

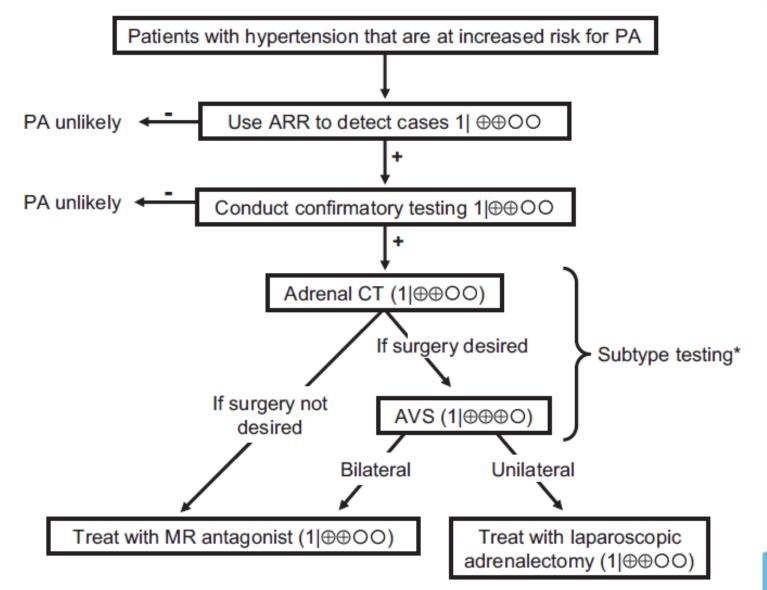
John W. Funder, Robert M. Carey, Carlos Fardella, Celso E. Gomez-Sanchez, Franco Mantero, Michael Stowasser, William F. Young Jr., and Victor M. Montori*

J Clin Endocrinol Metab 2008;93:3266-3281

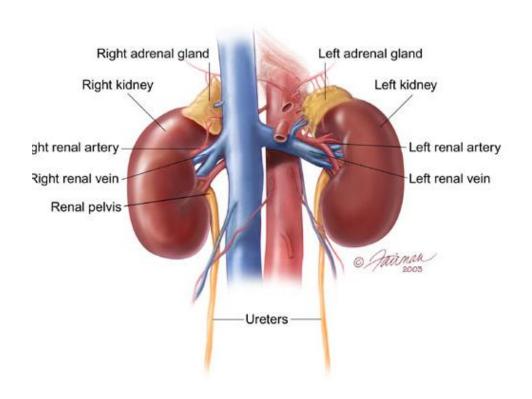
TABLE 4. Factors that may affect the ARR and thus lead to false-positive or false-negative results

Effect on aldosterone levels	Effect on renin levels	Effect on ARR
	20.0	CORPORA
1	1.1	↑ (FP)
1	11	↑ (FP)
i i	11	↑ (FP)
→1	1.1	↓ (FN)
1	† †	↓ (FN)
į.	1.1	↓ (FN)
į.	† †	↓ (FN)
$\rightarrow \downarrow$	` †	↓ (FN)
į.	↓ ↑*	↑ (FP) ^a ↓ (FN) ^a
	aldosterone levels ↓ ↓ →↑ ↑ ↓ ↓	aldosterone levels ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Footer Text 52



Case Detection, Diagnosis, and Treatment of Patients with Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline

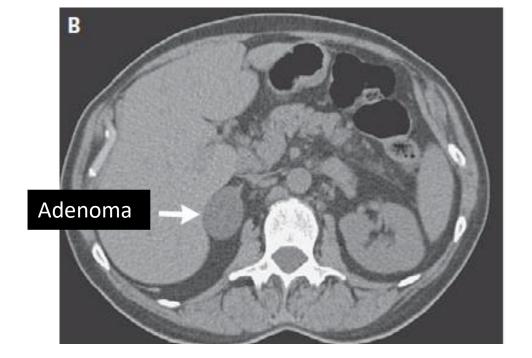

John W. Funder, Robert M. Carey, Carlos Fardella, Celso E. Gomez-Sanchez, Franco Mantero, Michael Stowasser, William F. Young Jr., and Victor M. Montori*

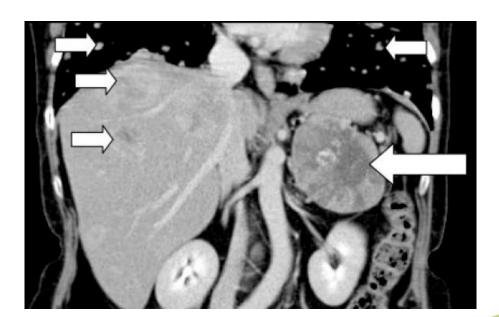
Evaluation of primary aldosteronism

Imaging & adrenal vein sampling

- Only request adrenal CT, if function testing confirmed to be abnormal
- Adrenal vein sampling is still required in people over age 35 even if adrenal adenoma present on CT because of incidentalomas

Footer Text 55 5


Adrenal vein sampling

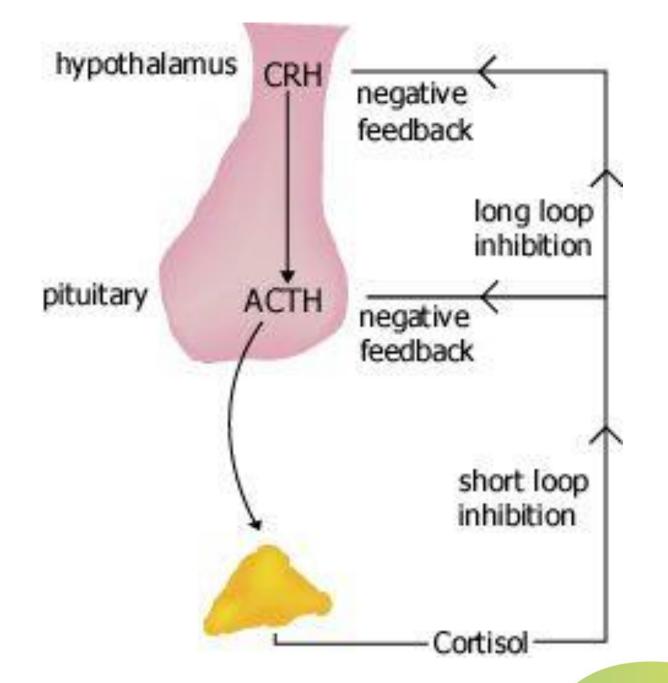

Aldosterone levels

- Right adrenal
- Left adrenal
- Periphery
- Ratios adrenal v: periphery
- May amplify ratios by administration of synthetic ACTH

Cortisol (used as a control to ensure correct position of catheter)

Carcinoma

Footer Text



President John F Kennedy: Addison's disease

Footer Text 58 5

Testing for possible adrenal insufficiency

- Blood taken for cortiso tern Health and ACTH
- 250 ug synthetic ACTH (Synacthen) I.M.
- 30 min and 60 min cortisol

Normal response:

- Peak cortisol ≥ 550 nmol/L
- (Also supposed to increase by at least 250 nmol/L...but in maximally stressed situations, this may not occur)

Secondary Adrenal insufficiency

- Short Synacthen test correlates well with ACTH deficiency (90% correlation)
- "Gold standard": Insulin tolerance test ITT
 - Rarely performed. *Must* be very closely supervised
 - Hypoglycaemia < 2.2 mmol/L
 - Cortisol response > 550 nmol/L normal
 - GH deficiency can also be assessed with ITT
 - Risks: Patients with IHD or epilepsy

Pituitary

Incidental pituitary adenomas

- Common
- Usually less than 10 mm (microadenoam)
- Prevalence approx 10% adult MRI pituitary scans
- Assess pituitary hormone function: Prolactin, ACTH, cortisol, GH, IGF-1, LH, FSH, Testosterone/oestradiol, TSH, T4, T3
- If macroadenomas near optic apparatus: formal visual fields & Visual Acuity
- Re-scan in 12 months for microadenomas
- ?Annual scans for 3 years

Testosterone assessment

- Fasting a.m.
- Total Testosterone: 4.2 nmol/L
- Repeat T: 3.8 nmol/L
- (Ref Range 10- 28 nmol/L)

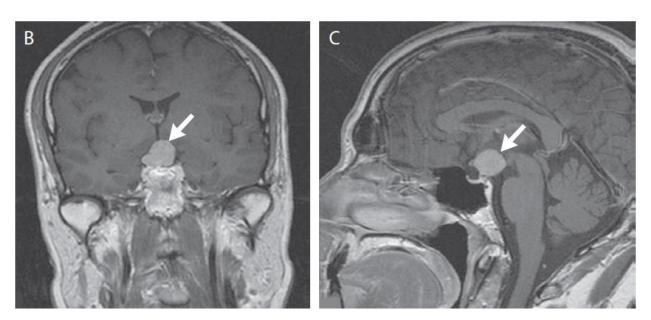
Next investigation?

- A. MRI pituitary
- B. Semen Analysis
- C. Karyotype
- D. LH/FSH
- E. SHBG/ calculated free testosterone

Footer Text 66

Next investigation?

- A. MRI pituitary
- B. Semen Analysis
- C. Karyotype
- D. LH/FSH
- E. SHBG/ calculated free testosterone


Footer Text 67

Further Assessment

- FSH 2.96 U/L (1-10); LH 2.45 U/L (1-10) → inappropriately normal = hypogonadotrophic hypogonadism
- Prolactin 1250 mU/L (<500) →
 stalk effect or prolactinoma?
- Normal fT4, TSH, am cortisol
- No headaches, visual field defects

Causes of Androgen Deficiency

Testicular

- Chromosomal Klinefelter's syndrome
- Surgery bilateral orchidectomy
- Radiotherapy
 /chemotherapy/drugs
 (spironolactone, ketoconazole)
- Infection mumps, orchitis
- Maldescended testes
- Trauma
- Systemic disease haemochromatosis, thalassaemia, myotonic dystrophy

Footer Text 70

Causes of Androgen Deficiency

Testicular

- Chromosomal Klinefelter's syndrome
- Surgery bilateral orchidectomy
- Radiotherapy
 /chemotherapy/drugs
 (spironolactone, ketoconazole)
- Infection mumps, orchitis
- Maldescended testes
- Trauma.
- Systemic disease haemochromatosis, thalassaemia, myotonic dystrophy

↓ LH/FSH or inappropriately normal LH/FSH

Hypothalamo-pituitary

- Pituitary macroadenoma (mass effect destroys gonadotropins)
- Panhypopituitarism (post surgery or radiotherapy)
- Prolactinoma (elevated prolactin levels suppress release of LH and FSH)
- Haemochromatosis
- Hypogonadotropic hypogonadism (Kallmann's syndrome)

Footer Text 7

Causes of Androgen Deficiency

Testicular

- Chromosomal Klinefelter's syndrome
- Surgery bilateral orchidectomy
- Radiotherapy
 /chemotherapy/drugs
 (spironolactone, ketoconazole)
- Infection mumps, orchitis
- Maldescended testes
- Trauma.
- Systemic disease haemochromatosis, thalassaemia, myotonic dystrophy

↓ LH/FSH or inappropriately normal LH/FSH

Hypothalamo-pituitary

- Pituitary macroadenoma (mass effect destroys gonadotropins)
- Panhypopituitarism (post surgery or radiotherapy)
- Prolactinoma (elevated prolactin levels suppress release of LH and FSH)
- Haemochromatosis
- Hypogonadotropic hypogonadism (Kallmann's syndrome)

Partial or transient androgen deficiency

Constitutional delay of puberty

Acute critical illness, burns, major trauma or surgery

Drug use (eg, opiates, glucocorticoids, anabolic steroids)

Chronic disease and its treatment

Ageing ("late-onset" androgen deficiency)

Obesity/ Insulin Resistance via low SHBG or increased E2

Practical point

Do not request LH/FSH if a woman is taking OCP

Cushing's syndrome

The Diagnosis of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline

Lynnette K. Nieman, Beverly M. K. Biller, James W. Findling, John Newell-Price, Martin O. Savage, Paul M. Stewart, and Victor M. Montori

TABLE 1. Overlapping conditions and clinical features of Cushing's syndrome^a

Symptoms	Signs	Overlapping conditions
Features that best discriminate Cushing's syndrom	e: most do not have a high sensitivity	
	Easy bruising	
	Facial plethora	
(Proximal myopathy (or proximal muscle weakness)	
	Striae (especially if reddish purple and > 1 cm wide))
	In children, weight gain with decreasing growth	
	velocity	
Cushing's syndrome features in the general popul		
Depression	Dorsocervical fat pad ("buffalo hump")	Hypertension ^b
Fatigue	Facial fullness	Incidental adrenal mass
Weight gain	Obesity	Vertebral osteoporosis ^b
Back pain	Supraclavicular fullness	Polycystic ovary syndrome
Changes in appetite	Thin skin ^b	Type 2 diabetes ^b
Decreased concentration	Peripheral edema	Hypokalemia
Decreased libido	Acne	Kidney stones
Impaired memory (especially short term)	Hirsutism or female balding	Unusual infections
Insomnia	Poor skin healing	
Irritability		
Menstrual abnormalities		
In children, slow growth	In children, abnormal genital virilization	
	In children, short stature	
	In children, pseudoprecocious puberty or delayed puberty	

The Diagnosis of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline

Lynnette K. Nieman, Beverly M. K. Biller, James W. Findling, John Newell-Price, Martin O. Savage, Paul M. Stewart, and Victor M. Montori

TABLE 1. Overlapping conditions and clinical features of Cushing's syndrome^a

Symptoms Signs		Overlapping condition
Features that best discriminate Cushing's syndrom	ne; most do not have a high sensitivity	
2 ,	Easy bruising	
	Facial plethora	
	Proximal myopathy (or proximal muscle weakness)	
	Striae (especially if reddish purple and > 1 cm wide)	
	In children, weight gain with decreasing growth	
	velocity	
Cushing's syndrome features in the general popul	lation that are common and/or less discriminatory	
Depression	Dorsocervical fat pad ("buffalo hump")	Hypertension ^b
Fatigue	Facial fullness	Incidental adrenal mass
Weight gain	Obesity	Vertebral osteoporosis ^b
Back pain	Supraclavicular fullness	Polycystic ovary syndrom
Changes in appetite	Thin skin ^b	Type 2 diabetes ^b
Decreased concentration	Peripheral edema	Hypokalemia
Decreased libido	Acne	Kidney stones
Impaired memory (especially short term)	Hirsutism or female balding	Unusual infections
Insomnia	Poor skin healing	
Irritability		
Menstrual abnormalities		
In children, slow growth	In children, abnormal genital virilization	
	In children, short stature	
	In children, pseudoprecocious puberty or delayed puberty	

Which are the 2 best screening test for Cushing's syndrome?

- A. 8 am serum cortisol
- B. 24 hour urinary free cortisol
- C. 1 mg overnight dexamethasone suppression test
- D. ACTH
- E. 8 mg overnight dexamethasone suppression test

Footer Text

h

Which are the 2 best screening test for Cushing's syndrome?

- A. 8 am serum cortisol
- B. 24 hour urinary free cortisol
- C. 1 mg overnight dexamethasone suppression test
- D. ACTH
- E. 8 mg overnight dexamethasone suppression test

Footer Text 7

TABLE 2. Conditions associated with hypercortisolism in the absence of Cushing's syndrome^a

Conditions

Some clinical features of Cushing's syndrome may be present

Pregnancy

Depression and other psychiatric conditions

Alcohol dependence

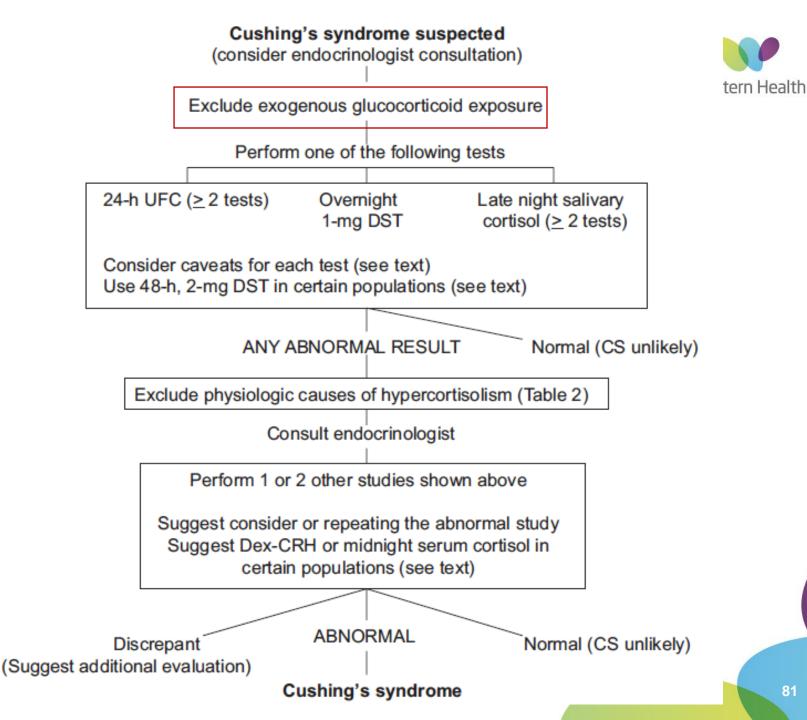
Glucocorticoid resistance

Morbid obesity

Poorly controlled diabetes mellitus

Unlikely to have any clinical features of Cushing's syndrome

Physical stress (hospitalization, surgery, pain)


Malnutrition, anorexia nervosa

Intense chronic exercise

Hypothalamic amenorrhea

CBG excess (increased serum but not urine cortisol)

Whereas Cushing's syndrome is unlikely in these conditions, it may rarely be present. If there is a high clinical index of suspicion, the patient should undergo testing, particularly those within the first group.

F

alth

< 1 pmol/L	ACTH - independent	Adrenal Source (Adrenal CT)
> 65 pmol/L	ACTH - dependent	Pituitary (more common) vs. ectopic source
1-65 pmol/L	Usually (not always) ACTH - dependent	

Prechilled EDTA tube, on ice, rapid refrigeration/ centrifugation essential

Footer Text 82

High dose dexamethasone suppression tests Western Health

- Classic protocol: Liddles' test
- Dexamethasone 2 mg orally every 6 hours for 48 hours
- Measure plasma cortisol and ACTH; urine free cortisol
- Modern protocol
- 4 hour 1 mg/h Dexamethasone iv infusion
- Plasma cortisol, ACTH measured hourly for 4 hours and the next morning
- Normal person suppresses by at least 50% by 4 hours and remains suppressed the next day
- Cushing's disease may partially suppress, but rebounds next day¹

Bilateral Inferior Petrosal Sinus Sampling

- Best test to differentiate central from ectopic
- Experienced radiologist needed
- Invasive test
- A ratio of central to peripheral ACTH of more than 2 in the basal state or more than 3 after CRH stimulation is consistent with Cushing's disease

TABLE 3. Causes of ectopic ACTH secretion from literature data (Refs. 54–58)

	Frequency, % (No.)				
Localization	Aniszewski et al., 2001 (54)	Ilias et al., 2005 (55)	Isidori et al., 2005 (56)	Salgado et al., 2006 (57)	
Bronchial carcinoid	25% (26/106)	40% (35/90)	34% (12/35)	40% (10/25)	
Pancreatic carcinoid	16% (17/106)	1% (1/90)	8% (3/35)	12% (3/25)	
Small-cell lung cancer ^a	11% (12/106)	3% (3/90)	6% (2/35)	ND	
Thymic carcinoid	5% (5/106)	5% (5/90)	6% (2/35)	16% (4/25)	
Unknown/occult	7% (7/106)	19% (17/90)	14% (5/35)	8% (2/25)	
Other	36% (39/106)	32% (27/90)	32% (11/35)	24% (6/25)	

ND, Not done.

^a Generally, this aggressive cancer is evident and is often recognized in patients with overt hypercortisolism. These patients are probably not referred to an endocrine expert center.

Osteoporosis

Case

- 80-year-old man recurrent falls.
- Kyphosis on examination.
- No prior fracture
- BMD
 - Lumbar spine T score +0.7
 - Femoral neck T score -2.3
- LS BMD falsely elevated due to osteoarthritis
- Plain thoracolumbar XR confirms crush fractures

Bone Mineral Density/DXA

- Osteoporosis T scores <-2.5
- Osteopenia T scores -2.4 to -1.0
- Look at the scout films
- When comparing scans, a significant change in BMD is only if:
 - Lumbar spine $\Delta 3\%$ if normal BMD, 5% if osteopenia/OP
 - Hip/Femur Δ 7%

Bone turnover markers

- CTx (C-telopeptide) bone resorption
- P1NP (Procollagen type 1 aminoterminal propeptide)—bone formation
- Fasting sample
- May be used to assess compliance with therapy
 - Expect CTx & P1NP to be suppressed on anti-resorptive therapy